Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Откройте для себя мир систем электропривода. Узнайте о компонентах, конструктивных особенностях и принципах работы электроприводов. Ознакомьтесь с последними исследованиями в этой области и получите всестороннее представление о технологии электропривода.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Электропривод / Выбор электрооборудования / Мощность на валу насосов, вентиляторов и компрессоров


 Школа для электрика в Telegram

Мощность на валу насосов, вентиляторов и компрессоров



Мощность на валу насосов, вентиляторов и компрессоровНа основании заданной для вентилятора или насоса подачи и суммарного напора, а для компрессора — подачи и удельной работы сжатия — определяется мощность на валу, в соответствии с которой может быть осуществлен выбор мощности приводного двигателя.

Для центробежного вентилятора, например, формула определения мощности на валу выводится из выражения энергии, сообщаемой движущемуся газу в единицу времени.

Пусть F — сечение газопровода, м2; m — масса газа за секунду, кг/с; v — скорость движения газа, м/с; ρ — плотность газа, м3; ηв, ηп — кпд вентилятора и передачи.

Известно, что

Тогда выражение для энергии движущегося газа примет вид:

откуда мощность на валу приводного двигателя, кВт,

В формуле можно выделить группы величин, соответствующих подаче, м3/с, и напору вентилятора, Па:

Из приведенных выражений видно, что

Соответственно

здесь с, с1 с2 — постоянные величины.

Отметим, что вследствие наличия статического напора и конструктивных особенностей центробежных вентиляторов показатель степени в правой части может отличаться от 3.

Электропривод центробежного вентилятора

Аналогично тому, как это было сделано для вентилятора, можно определить мощность на валу центробежного насоса, кВт, которая равна:

где Q — подача насоса, м3/с;

Нг— геодезический напор, равный разности высот нагнетания и всасывания, м; Нс — суммарный напор, м; P2 — давление в резервуаре, куда перекачивается жидкость, Па; P1 — давление в резервуаре, откуда перекачивается жидкость, Па; ΔН — потеря напора в магистрали, м; зависит от сечения труб, качества их обработки, кривизны участков трубопровода и т. д.; значения ΔН приводятся в справочной литературе; ρ1 — плотность перекачиваемой жидкости, кг/м3; g = 9,81 м/с2 — ускорение свободного падения; ηн, ηп — к. п. д. насоса и передачи.

С некоторым приближением для центробежных насосов можно принять, что между мощностью на валу и скоростью существует зависимость Р = сω3 и М = сω2. Практически показатели степени у скорости меняются в пределах 2,5— 6 для различных конструкций и условий работы насосов, что необходимо учитывать при выборе электропривода.

Указанные отклонения определяются для насосов наличием напора магистрали. Отметим попутно, что очень важным обстоятельством при выборе электропривода насосов, работающих на магистрали с высоким напором, является то, что они весьма чувствительны к снижению скорости двигателя.

Основной характеристикой насосов, вентиляторов и компрессоров является зависимость развиваемого напора Н от подачи этих механизмов Q. Указанные зависимости представляются обычно в виде графиков НQ для различных скоростей механизма.

На рис. 1 в качестве примера приведены характеристики (1, 2, 3, 4) центробежного насоса при различных угловых скоростях его рабочего колеса. В тех же координатных осях нанесена характеристика магистрали 6, на которую работает насос. Характеристикой магистрали называется зависимость между подачей Q и напором, необходимым для подъема жидкости на высоту, преодоления избыточного давления на выходе из нагнетательного трубопровода и гидравлических сопротивлений. Точки пересечения характеристик 1,2,3 с характеристикой 6 определяют значения напора и производительности при работе насоса на определенную магистраль при различных скоростях.

Рис. 1. Зависимость напора Н насоса от его подачи Q.

Электропривод вентиляционной установки

Пример 1. Построить характеристики Н, Q центробежного насоса для различных скоростей 0,8ωн; 0,6ωн; 0,4ωн, если характеристика 1 при ω = ωн задана (рис. 1).

1. Для одного и того же насоса

Следовательно,

2. Построим характеристику насоса для ω = 0,8ωн.

Для точки б

Для точки б'

Таким образом, можно построить вспомогательные параболы 5, 5', 5"... которые на оси ординат при Q = 0 вырождаются в прямую, и характеристики QH для различных скоростей насоса.

Мощность двигателя поршневого компрессора может быть определена на основании индикаторной диаграммы сжатия воздуха или газа. Такая теоретическая диаграмма приведена на рис. 2. Некоторое количество газа сжимается в соответствии с диаграммой от начального объема V1 и давления P1 до конечного объема V2 и давления P2.

На сжатие газа затрачивается работа, которая будет различна в зависимости от характера процесса сжатия. Этот процесс может осуществляться по адиабатическому закону без отдачи тепла, когда индикаторная диаграмма ограничена кривой 1 на рис. 2; по изотермическому закону при постоянной температуре, соответственно кривая 2 на рис. 2, либо по политропе кривая 3, которая показана сплошной линией между адиабатой и изотермой.

Рис. 2. Индикаторная диаграмма сжатия газа.

Работа при сжатии газа для политропического процесса, Дж/кг, выражается формулой

где n — показатель политропы, определяемый уравнением pVn = const; P1 — начальное давление газа, Па; P2 — конечное давление сжатого газа, Па; V1 — начальный удельный объем газа, или объем 1 кг газа при всасывании, м3.

Мощность двигателя компрессора, кВт, определяется выражением

здесь Q — подача компрессора, м3/с; ηк — индикаторный к. п. д. компрессора, учитывающий потери мощности в нем при реальном рабочем процессе; ηп — к. п. д. механической передачи между компрессором и двигателем. Так как теоретическая индикаторная диаграмма существенно отличается от действительной, а получение последней не всегда возможно, то при определении мощности на валу компрессора, кВт, часто пользуются приближенной формулой, где исходными данными являются работа изотермического и адиабитического сжатия, а также к. п. д. компрессора, значения которых приводятся в справочной литературе.

Эта формула имеет вид:

где Q — подача компрессора, м3/с; Аи — изотермическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3; Аа — адиабатическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3.

Зависимость между мощностью, на валу производственного механизма поршневого типа и скоростью совершенно отлична от соответствующей зависимости для механизмов с вентиляторным характером момента на валу. Если механизм поршневого типа, например насос, работает на магистраль, где поддерживается постоянный напор Н, то очевидно, что поршню при каждом ходе приходится преодолевать постоянное среднее усилие независимо от скорости вращения.

Среднее значение мощности

но так как Н = const, то

Следовательно, среднее значение момента на валу насоса поршневого типа при постоянном противодавлении не зависит от скорости:

Мощность на валу центробежного компрессора, так же как у вентилятора и насоса, с учетом сделанных ранее оговорок пропорциональна третьей степени угловой скорости.

На основании полученных формул определяется мощность на валу соответствующего механизма. Для выбора двигателя в указанные формулы следует подставить номинальные значения подачи и напора. По полученной мощности может быть выбран двигатель продолжительного режима работы.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика