СПРАВОЧНИК: Магниторезистивные датчики тока для силовых цепей

Быстрый справочник технических параметров

РАЗДЕЛ 1. ОСНОВНЫЕ ТИПЫ МАГНИТОРЕЗИСТИВНЫХ ТЕХНОЛОГИЙ

Сравнительная таблица магниторезистивных эффектов

Технология	AMR	GMR		TMR	Датчик Холла
Магнитосопротивление	2-5%	10–20%	100-600%		Не применимо
Год открытия	1856	1988	1995		1879
Чувствительность (мВ/В/Э)	~1	~3	~100		~0,05
Динамический диапазон (Э)	~10	~100	~1000		~10000
Разрешение (нТ/√Гц)	0,1-10	1–10	0,1–10		>100
Энергопотребление (мА)	1–10	11_10	0,001– 0,01		1–50
Температурный диапазон	<150°C	<150°C	<200°C		<150°C
-	Компасы Жесткие диски Датчики нового поколения Широкий спектр				

РАЗДЕЛ 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДАТЧИКА TMR7307-CB

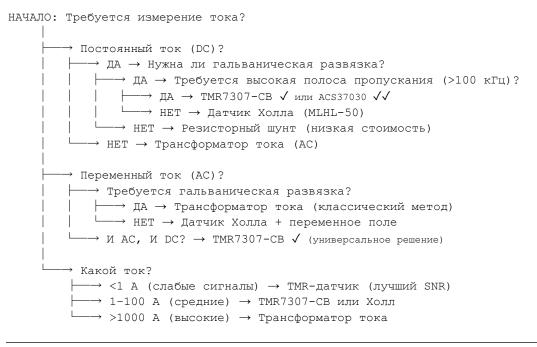
Электрические параметры

Параметр	Типовое значение Минимальное Максимальное Единица				
Напряжение питания	5,0	4,5	5,5	В	
Ток потребления	5	3	8	мА	
Выходное напряжение (при нулевом то	ке) 2,5	2,3	2,7	В	
Выходное напряжение (при полном токе)	4,5	4,3	4,7	В	
Чувствительность	100	95	105	мВ/А	
Максимальная нелинейность	±1,0	_	±1,5	% FS	
Температурный коэффициент смещения	±0,5	_	±1,0	%/°C	
Полоса пропускания (-3 дБ)	500	400	600	кГц	
Точность измерения в зависимост	 ги от условий				
Условие	При 25°С	При -40°C	При +105°C		
Погрешность смещения нуля	±0,5%	±1,5%	±1,5%		
Погрешность чувствительности	±0,8%	±1,2%	±1,2%		
Полная систематическая погрешность	±1,5%	±2,5%	±2,5%		

Механические параметры

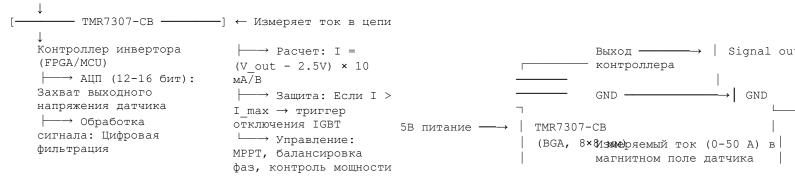
Параметр	Значение
Размеры корпуса	$8 \times 8 \times 6$ мм (BGA) или SMD

Количество выводов	выводов 16 (BGA) или 8 (DIP)				
Допустимое ускорение 5000 g (пиковое)					
Параметр	Значение				
Виброустойчивость	10–2000 Гц				
Macca	~0,5 г				


РАЗДЕЛ 3. СРАВНЕНИЕ ДАТЧИКОВ ТОКА: ВЫБОР ОПТИМАЛЬНОГО РЕШЕНИЯ

Матрица выбора датчика в зависимости от применения

Применение	Требуемый ток (А)	Требуемая точность	Полоса пропускания	Изоляция	Рекомендуемый датчик
Фитнес-трекер	0,1-1	±5%	<10 кГц	Не требуется	Датчик Холла (MLHL-50)
Портативное зарядное устройство	1–5	±2%	10–100 кГц	Желательна	ACS712 (Allegro Holл)
Солнечный инвертор	10–50	±1%	100–500 кГц	Требуется	TMR7307-CB (TMR)
Электромобиль (BMS)	5–200	±1–2%	50–500 кГц	I DCO YCICA	ACS37030 (TMR, Allegro)
Электромобиль (инвертор)	50–1000	±1%	100–500 кГц	Требуется	ACS37041 (TMR, Allegro)
Промышленный привод	10–500	±2%	1–100 кГц	Требуется	TMR7307-C (TMR)
Электроподстанция	100–5000	±1–2%	<10 кГц	Требуется	Трансформатор тока + шунт


РАЗДЕЛ 4. АЛГОРИТМ ВЫБОРА МАГНИТОРЕЗИСТИВНОГО ДАТЧИКА

Решающее дерево выбора

РАЗДЕЛ 5. ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ И СХЕМЫ ПОДКЛЮЧЕНИЯ

Типовая схема подключения TMR7307-CB в инверторе электромобиля

РАЗДЕЛ 6. ТАБЛИЦА ОТЛАДКИ И ДИАГНОСТИКИ

Решение проблем с датчиком TMR7307-CB

Проблема	Возможная причина	Решение
Выходное напряжение вне диапазона 2-4,5 В	плохос питапис или обрыв	Проверить напряжение питания 5V, проверить соединения
Шумный сигнал	Электромагнитные помехи (EMI)	Экранировать проводку, добавить LC- фильтры, дифференциальная схема
	Температурный дрейф или заводской брак	Откалибровать программно или заменить датчик
Чувствительность ниже	Магнитный датчик слишком	Переместить датчик ближе к проводнику
, ,	далеко	(оптимально 2-5 мм)
Отсутствие сигнала вообще	Поломка датчика, обрыв BGA контактов	Заменить датчик, проверить пайку
		Реализовать таблицу коррекции температуры в памяти MCU
Слишком медленное время отклика	Фильтр низких частот слишком активен	Увеличить частоту среза фильтра, использовать цифровую фильтрацию

РАЗДЕЛ 7. РАСЧЕТНЫЕ ФОРМУЛЫ И ПРИМЕРЫ

Базовые расчеты для магниторезистивных датчиков

1. Расчет магнитного поля от проводника (закон Ампера):

```
H = I / (2\pi \times r) где:

H - напряженность магнитного поля (A/M)

I - ток в проводнике (A)

r - расстояние от проводника до датчика (M)

\pi \approx 3,14159

ПРИМЕР: Ток 50 A на расстоянии 3 мм от датчика

H = 50 / (2 \times 3,14159 \times 0,003) = 2654 \text{ A/M} \approx 33,5 \text{ MT}
```

2. Расчет выходного напряжения датчика:

```
V_out = V_mid + Sensitivity × I_measured

где:

V_out - выходное напряжение (В)

V_mid - напряжение посередине диапазона (2,5 В)

Sensitivity - чувствительность датчика (100 мВ/А для ТМR7307-СВ)

I_measured - измеряемый ток (А)

ПРИМЕР: Датчик ТМR7307-СВ при измерении 25 А

V_out = 2,5 + 0,1 × 25 = 2,5 + 2,5 = 5,0 В ✓
```

3. Расчет погрешности измерения:

```
Error_total = \sqrt{(Error_offset^2 + Error_gain^2 + Error_temp^2 + Error_nonlinearity^2)}
```

```
ПРИМЕР: Общая погрешность при +85^{\circ}C Error_total = \sqrt{(1,5^2+0,8^2+1,2^2+1,0^2)} = \sqrt{(2,25+0,64+1,44+1,00)} = \sqrt{5}, 33 = 2,31% \approx \pm 2,3%
```

4. Расчет размеров магнитного концентратора:

Фокусное расстояние = 1,5 \times толщина проводника
ПРИМЕР: Проводник диаметром 3 мм
Оптимальное расстояние до датчика = 1,5 \times 3 = 4,5 мм

Практический пример: Расчет датчика для солнечного инвертора

Дано:

- Номинальный ток: 32 А
- Требуемая точность: ±1%
- Рабочий диапазон температур: -20°C до +60°C
- Условия: Помехи от других проводников возможны

Решение:

- 1. Выбор датчика: ТМR7307-32С (номинал 32 А)
- 2. Полоса пропускания: 500 к Γ ц достаточна для MPPT (~10 к Γ ц)
- 3. Изоляция: Встроенная (5 кВ)
- 4. Размещение: На 3 мм от проводника главной шины
- 5. Питание: Отдельный стабилизатор 5В $(\pm 5\%)$
- 6. Фильтрация: LC-фильтр с fc = 100 кГц
- 7. Компенсация: Температурная таблица в EEPROM MCU
- 8. Защита: Быстродействующий компаратор для срабатывания при I > 35 A

Ожидаемая погрешность: ±1,5% во всем диапазоне

РАЗДЕЛ 8. ТЕХНИЧЕСКИЕ СТАНДАРТЫ И СЕРТИФИКАЦИЯ

Применимые стандарты для магниторезистивных датчиков

Стандарт	Описание	Применение
	Функциональная безопасность электроники в автомобилях	Системы безопасности (ASIL A-D)
AEC-Q100	Компоненты электроники для автомобилей	Надежность, температурные испытания
IEC 61010- 1	Безопасность измерительных приборов	Лабораторная техника
IEC 60068	Условия окружающей среды и испытания	Вибрации, удары, температура
EN 61800-3	электромагнитная совместимость приводов	Промышленные преобразователи частоты
IEC 61326	Общие требования к измерительному оборудованию	Электромагнитная совместимость

Сертификаты производителей

Производитель	Датчик	Сертификаты	Автомобильный стандарт
Allegro MicroSystems	ACS37030	AEC-Q100 Grade 0	ISO 26262 (ASIL B)
MultiDimension Tech (MDT)	TMR7307-CB	RoHS, Pb-Free	Соответствует АЕС
Infineon	TLE 4972	AEC-Q100	ISO 26262 (ASIL B)
NXP Semiconductors	MLX91210	AEC-Q100 Grade 1	ISO 26262 (ASIL B)

РАЗДЕЛ 9. СРАВНИТЕЛЬНАЯ ТАБЛИЦА ПОПУЛЯРНЫХ ДАТЧИКОВ ТОКА

Датчик	Производитель Технология		Диапазон (A)	Точность С	гоимость	Применение
TMR7307-CB	MultiDimension [TMR	±32	±1-2,5%	\$	Солнечные инверторы

ACS37030MY	Allegro	TMR	±30	±1%	\$\$	Электромобили
ACS37041	Allegro	TMR	±50	±1%	\$\$	Мощные приводы
ACS712	Allegro	Холл	±5 до ±30	±1,5–3%	\$	Генеральная электроника
MLHL-50	NXP	Холл	±50	±3%	\$	Промышленность
TLE4972	Infineon	TMR	±25	±1,5%	\$\$	Автомобили
Резисторный шунт	Различные		<1000	±0,5-1%	\$	Универсальное

Условные обозначения: \$ = <\$1, \$\$ = \$1-5, \$\$\$ = >\$5 за единицу при покупке 1000 шт

РАЗДЕЛ 10. ИСТОЧНИКИ ИНФОРМАЦИИ И КОНТАКТЫ

Ведущие производители магниторезистивных датчиков

Компания	Сайт	Основные продукты	Техподдержка
MultiDimension Technology	www.mdt.com.cn	Серия TMR7300,	Email: support@mdt.com.cn
(MDT)		TMR8300	
Allegro MicroSystems	www.allegromicro.com	Серия ACS37000, ACS712	www.allegromicro.com/support
Infineon Technologies	www.infineon.com	TLE4972, TLE4974	www.infineon.com/support
NXP Semiconductors	www.nxp.com	MLX91210, MLX90203	www.nxp.com/support
Honeywell	www.honeywell.com	CSLW (Legacy)	www.honeywell.com/support
Полезные ресурсы			

- Datasheet хранилище: www.alldatasheet.com, www.datasheetspdf.com
- Калькулятор магнитного поля: www.caltool.org (магнитные поля проводников)
- Симуляторы схем: LTspice (www.analog.com/ltspice), KiCAD (www.kicad.org)
- Форумы: Electronics StackExchange, EEVblog Forum

РАЗДЕЛ 11. БЫСТРАЯ СПРАВКА: ТИПИЧНЫЕ ОШИБКИ

10 наиболее распространенных ошибок при проектировании систем с магниторезистивными датчиками

Ŋ	Ошибка	Последствие	Как избежать
1	Расположение датчика > 10 мм от проводника	Потеря сигнала, шум	Оптимальное расстояние: 2-5 мм
2		/ 1 1	Установить 100 нФ + 10 мкФ рядом с датчиком
3	1.1.	Гальванический шум, погрешности	Использовать буферный усилитель
4	Игнорирование температурного дрейфа	Реализовать температурную Погрешность растет при нагреве компенсацию в ПО	
5		TODE	Экранированный кабель, общая точка земли
6	1	ا ا ا	Найти баланс: fc ≈ 10 × полосу сигнала
7	Неправильная полярность магнитного поля	himsepinpobamice namepenne	Проверить направление полей с помощью компаса

8	Использование датчика вне номинального диапазона	птерегрузка, пасыщение	Выбрать датчик с запасом 20–30% по диапазону
9	Отсутствие откалибровки нулевого уровня		Откалибровать выход при I=0 при включении
1	ОИгнорирование зависимости чувствительности от частоты	_	Проверить частотную характеристику датчика

РАЗДЕЛ 12. ГЛОССАРИЙ ТЕРМИНОВ

Термин	Сокращение	Определение
Туннельное магнитосопротивление		Эффект квантового туннелирования электронов через магнитный барьер
Гигантское магнитосопротивление	OMIX	Магнитосопротивление в многослойных структурах ферромагнитных металлов
Анизотропное магнитосопротивление	7 71 V 11 X	Зависимость сопротивления ферромагнитного материала от ориентации намагниченности
Гальваническая развязка	Isolation	Электрическое разделение цепей без физического контакта
Полоса пропускания	ייע	Диапазон частот, в котором датчик работает с заданной точностью
Динамический диапазон	DIC	Отношение максимального к минимальному измеряемому значению
Чувствительность	Schistervity	Изменение выходного сигнала при единичном изменении входа
Соотношение сигнал/шум	SNR	Отношение полезного сигнала к шумовому сигналу
Отслеживание точки максимальной мощности	MPPT	Алгоритм оптимизации выработки солнечных панелей
Система управления батареей	BMS	Электроника контроля заряда и разряда аккумулятора
Инвертор тока	Inverter	Устройство преобразования постоянного тока в переменный
Коэффициент гармонических искажений	THD	Мера нелинейности сигнала

Версия справочника: 1.0

Дата последнего обновления: ноябрь 2025

Для вопросов и уточнений используйте контакты производителей, указанные в Разделе 10.

Автор концепции: Повный Андрей Владимирович, преподаватель Филиала УО Белорусский государственный технологический университет "Гомельский государственный политехнический колледж"

Caйт: https://electricalschool.info/

Канал в Telegram: https://t.me/electricalschool