Из выражения для мощности на постоянном токе Р = IU видно, что ее можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.
Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.
Электродинамические ваттметры выпускают в виде переносных приборов высоких классов точности (0,1 - 0,5) и используют для точных измерений мощности постоянного и переменного тока на промышленной и повышенной частоте (до 5000 Гц). Ферродинамические ваттметры чаще всего встречаются в виде щитовых приборов относительно низкого класса точности (1,5 - 2,5).
Применяют такие ваттметры главным образом на переменном токе промышленной частоты. На постоянном токе они имеют значительную погрешность, обусловленную гистерезисом сердечников.
Для измерения мощности на высоких частотах применяют термоэлектрические и электронные ваттметры, представляющие собой магнитоэлектрический измерительный механизм, снабженный преобразователем активной мощности в постоянный ток. В преобразователе мощности осуществляется операция умножения ui = р и получение сигнала на выходе, зависящего от произведения ui, т. е. от мощности.
На рис. 1, а показана возможность использования электродинамического измерительного механизма для построения ваттметра и измерения мощности.
Рис. 1. Схема включения ваттметра (а) и векторная диаграмма (б)
Неподвижная катушка 1, включаемая в цепь нагрузки последовательно, называется последовательной цепью ваттметра, подвижная катушка 2 (с добавочным резистором), включаемая параллельно нагрузке — параллельной цепью.
Для ваттметра, работающего на постоянном токе:
Рассмотрим работу электродинамического ваттметра на переменном токе. Векторная диаграмма рис. 1, б построена для индуктивного характера нагрузки. Вектор тока Iu параллельной цепи отстает от вектора U на угол γ вследствие некоторой индуктивности подвижной катушки.
Из этого выражения следует, что ваттметр правильно измеряет мощность лишь в двух случаях: при γ = 0 и γ = φ.
Условие γ = 0 может быть достигнуто созданием резонанса напряжений в параллельной цепи, например включением конденсатора С соответствующей емкости, как это показано штриховой линией на рис. 1, а. Однако резонанс напряжений будет лишь при некоторой определенной частоте. С изменением частоты условие γ = 0 нарушается. При γ не равном 0 ваттметр измеряет мощность с погрешностью βy, которая носит название угловой погрешности.
При малом значении угла γ (γ обычно составляет не более 40 - 50'), относительная погрешность
При углах φ, близких к 90°, угловая погрешность может достигать больших значений.
Второй, специфической, погрешностью ваттметров является погрешность, обусловленная потреблением мощности его катушками.
При измерении мощности, потребляемой нагрузкой, возможны две схемы включения ваттметра, отличающиеся включением его параллельной цепи (рис. 2).
Рис. 2. Схемы включения параллельной обмотки ваттметра
Если не учитывать фазовых сдвигов между токами и напряжениями в катушках и считать нагрузку Н чисто активной, погрешности β(а) и β(б), обусловленные потреблением мощности катушками ваттметра, для схем рис. 2, а и б:
где Рi и Рu — соответственно мощность, потребляемая последовательной и параллельной цепью ваттметра.
Из формул для β(а) и β(б) видно, что погрешности могут иметь заметные значения лишь при измерениях мощности в маломощных цепях, т. е. когда Рi и Рu соизмеримы с Рн.
Если поменять знак только одного из токов, то изменится направление отклонения подвижной части ваттметра.
У ваттметра имеются две пары зажимов (последовательной и параллельной цепей), и в зависимости от их включения в цепь направление отклонения указателя может быть различным. Для правильного включения ваттметра один из каждой пары зажимов обозначается знаком «*» (звездочка) и называется «генераторным зажимом».