Выпрямитель - статическое устройство, служащее для преобразования переменного тока источника электроэнергии (сети) в постоянный. Выпрямитель состоит из трансформатора, вентильной группы и сглаживающего фильтра (рис. 1).
Трансформатор Тр выполняет несколько функций: изменяет напряжение сети Uвх до значения U1 необходимого для выпрямления, электрически отделяет нагрузку Н от сети, преобразует число фаз переменного тока.
Вентильная группа ВГ преобразует переменный ток в пульсирующий однонаправленный. Сглаживающий фильтр СФ уменьшает пульсации выпрямленного напряжения (тока) до значения, допустимого для работы нагрузки. Трансформатор Тр и сглаживающий фильтр СФ не являются обязательными элементами схемы выпрямителя.
Рис. 1. Структурная схема выпрямителя
Основными параметрами, характеризующими качество работы выпрямителя, являются:
-
средние значения выпрямленного (выходного) напряжения Uср и тока Iср,
-
частота пульсаций fп выходного напряжения (тока),
-
коэффициент пульсаций р, равный отношению амплитуды напряжения пульсаций к среднему значению выходного напряжения. Вместо коэффициента пульсаций р часто используют коэффициент пульсаций по первой гармонике равный отношению амплитуды первой гармоники выходного напряжения к его среднему значению,
-
внешняя характеристика - зависимость среднего значения выпрямленного напряжения от среднего значения выпрямленного тока,
-
к. п. д. η = Pполезн / Pпотр = Pполезн / (полезн + Ртр + Рвг + Рф), где Ртр, Рвг, Рф - мощность потреь в трансформаторе, в вентильной группе и сглаживающем фильтре.
Работа выпрямителя (вентильной группы) основана на свойствах вентилей - нелинейных двухполюсников, пропускающих ток преимущественно в одном (прямом) направлении.
В качестве вентилей используют обычно полупроводниковые диоды. Вентиль, обладающий нулевым сопротивлением для прямого тока и имеющий бесконечно большое сопротивление для обратного тока, называют идеальным.
Вольт-амперные характеристики реальных вентилей приближаются к в. а. х. идеального вентиля. Для работы в выпрямителях вентили выбирают по эксплуатационным параметрам, к которым относятся:
-
наибольший (прямой) рабочий ток I срmaх - предельно допустимое среднее значение выпрямленного тока, протекающего через вентиль при его работе в однополупернодной схеме на активную нагрузку (при нормальных для данного вентиля условиях охлаждения и температуры, не превышающей предельного значения),
-
наибольшее допустимое обратное напряжение (амплитуда) Uобрmaх - обратное напряжение, которое вентиль выдерживает в течение длительного времени. Как правило, напряжение Uобрmaх равно половине напряжения пробоя,
-
прямое падение напряжения Uпр - среднее значение прямого напряжения в однополупернодной схеме выпрямления, работающей на активную нагрузку при номинальном токе.
-
обратный ток Iобр - значение тока, протекающего через вентиль, при приложении к нему допустимого обратного напряжения,
-
максимальная мощность Рmах - максимально допустимая мощность, которая может быть рассеяна вентилем.
Схемы выпрямления
Наиболее распространенные схемы выпрямления показаны на рисунках, где приняты следующие обозначения: mс - число фаз напряжения сети, m1 - число фаз напряжения на входе схемы выпрямления (на выходе трансформатора), m = fп / fc - коэффициент, равный отношению частоты пульсации выходного напряжения к частоте напряжения сети. В качестве вентилей везде изображены полупроводниковые диоды.
Самые распространенные схемы выпрямления и формы выходного напряжения при работе на активную нагрузку:
Однофазная однополупериодная схема выпрямления (mc=1, m1=1, m=1)
Однофазная двухполупериодная схема выпрямления (мостовая схема выпрямления mc=1, m1=1, m=2)
Однофазная схема выпрямления с выводом средней точки (mc=1, m1=2, m=2)
Трехфазная схема выпрямления с выводом нейтрали (mc=3, m1=3, m=3)
Трехфазная мостовая схема выпрямления (mc=3, m1=3, m=6)
Основные соотношения для схем выпрямления при работе на активную нагрузку Rн в предположении идеальности трансформатора и вентилей приведены в таблице: