Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочные материалы / SMD резисторы - виды, параметры и характеристики


 Школа для электрика в Telegram

SMD резисторы - виды, параметры и характеристики



Резистор – это элемент, обладающий каким-либо сопротивлением, применяется в электронике и электротехнике для ограничения тока или получения необходимых напряжений (например, использование резистивного делителя). SMD-резисторы – это резисторы для поверхностного монтажа, иначе говоря – монтажа на поверхность печатной платы.

Основные характеристики для резисторов – это номинальное сопротивление, измеряется в Омах и зависит от толщины, длины и материалов резистивного слоя, а также рассеиваемая мощность.

Электронные компоненты для поверхностного монтажа отличаются малыми габаритами за счет того, что у них либо отсутствуют выводы для подключения в классическом понимании. У элементов для объемного монтажа есть длинные выводы.

SMD резисторы

Ранее при сборке РЭА ими соединяли компоненты цепи между собой (навесной монтаж) или продевали их через печатную плату в соответствующие отверстия. Конструктивно выводы или контакты у них выполнены в вид металлизированных площадок на корпусе элементов. В случае же микросхем и транзисторов поверхностного монтажа у элементов присутствуют короткие жесткие «ножки».

Одной из основных характеристик SMD-резисторов является и типоразмер. Это величина длины и ширины корпуса, по этим параметрам подбирают элементы, соответствующие разводке платы. Обычно размеры в документации пишутся сокращенно четырёхзначным числом, где первые две цифры указывают длину элемента в мм, а вторая пара символов – ширину в мм. Однако, фактически, размеры могут отличаться от маркировки в зависимости от типов и серии элементов.

Типовые размеры SMD-резисторов и их параметры

Типовые размеры SMD-резисторов

 Рисунок 1 - обозначения для расшифровки типоразмеров.

1. SMD-резисторы 0201:

L=0.6 мм; W=0.3 мм; H=0.23 мм; L1=0.13 м.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,05 Вт

  • Рабочее напряжение: 15 В

  • Максимально допустимое напряжение: 50 В

  • Рабочий диапазон температур: –55 — +125 °С

2. SMD-резисторы 0402:

L=1.0 мм; W=0.5 мм; H=0.35 мм; L1=0.25 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,062 Вт

  • Рабочее напряжение: 50 В

  • Максимально допустимое напряжение: 100 В

  • Рабочий диапазон температур: –55 — +125 °С

3. SMD-резисторы 0603:

L=1.6 мм; W=0.8 мм; H=0.45 мм; L1=0.3 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,1 Вт

  • Рабочее напряжение: 50 В

  • Максимально допустимое напряжение: 100 В

  • Рабочий диапазон температур: –55 — +125 °С

4. SMD-резисторы 0805:

L=2.0 мм; W=1.2 мм; H=0.4 мм; L1=0.4 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,125 Вт

  • Рабочее напряжение: 150 В

  • Максимально допустимое напряжение: 200 В

  • Рабочий диапазон температур: –55 — +125 °С

5. SMD-резисторы 1206:

L=3.2 мм; W=1.6 мм; H=0.5 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,25 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — +125 °С

6. SMD-резисторы 2010:

L=5.0 мм; W=2.5 мм; H=0.55 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,75 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — +125 °С

7. SMD-резисторы 2512:

L=6.35 мм; W=3.2 мм; H=0.55 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 1 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — +125 °С

Как вы можете видеть, с увеличением размеров чип-резистора увеличивается и номинальная рассеиваемая мощность в таблице ниже нагляднее приведена эта зависимость, а также геометрические размеры резисторов других типов:

Таблица 1 – Маркировка SMD-резисторов

Маркировка SMD-резисторов

В зависимости от размеров может применяться один из трёх видов маркировки номинала резистора. Выделяют три вида маркировки:

1. С помощью 3-х цифр. При этом первые две обозначают количество ом, а последняя количество нулей. Так маркируют резисторы из ряда Е-24, c отклонением от номинала (допуском) в 1 или 5%. Типоразмер резисторов с такой маркировкой - 0603, 0805 и 1206. Пример такой маркировки: 101 = 100 = 100 Ом

Изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм

 Рисунок 2 – изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм.

 2. С помощью 4-х символов. В этом случае 3 первых цифры обозначают количество Ом, а последняя – количество нулей. Так описываются резисторы из ряда Е-96 типоразмеров 0805, 1206. Если в маркировке присутствует буква R – она играет роль запятой, отделяющей целые от долей. Таким образом маркировка 4402 расшифровывается как 44 000 Ом или 44 кОм.

Изображение SMD-резистора с номиналом в 44 кОма

 Рисунок 3 – изображение SMD-резистора с номиналом в 44 кОма

3. Маркировка комбинацией из 3 символов – цифр и букв. При этом 2 первых знака – это цифры, обозначают закодированное значение сопротивления в Омах. Третий символ – это множитель. Таким способом маркируются резисторы типоразмера 0603 из ряда сопротивлений Е-96, с допуском 1%. Перевод букв во множитель выполняется по ряду: S=10^-2; R=10^-1; B=10; C=10^2; D=10^3; E=104; F=10^5.

Расшифровка кодов (первых двух символов) ведется по таблице, изображенной ниже.

Таблица 2 – расшифровка кодов маркировки SMD-резисторов

Расшифровка кодов маркировки SMD-резисторовРезистор с трёхсимвольной маркировкой 10С

Рисунок 4 – резистор с трёхсимвольной маркировкой 10С, если воспользоваться таблицей и приведенным рядом множителей, то 10 – это 124 Ома, а С – это множитель 10^2, что равняется 12 400 Ома или 12.4 кОм.

Основные параметры резисторов

У идеального резистора учитывают только его активное сопротивление. В реальности же дело обстоит иначе – у резисторов есть и паразитные индуктивно-емкостные составляющие. Ниже приведен один из вариантов эквивалентной схемы резистора:

Эквивалентная схема резистора

 Рисунок 5 - Эквивалентная схема резистора

Как можно увидеть на схеме присутствуют и емкости (конденсаторы) и индуктивность. Их наличие связано с тем, что у каждого проводника есть определенная индуктивность, а у группы проводников – паразитная ёмкость. У резистора же они связаны с расположением его резистивного слоя и его конструкцией.

Эти параметры в цепях постоянного тока и низкочастотных цепях обычно не учитывают, но они могут внести существенное влияние в высокочастотных радиопередающих схемах и в импульсных блоках питания, где протекают токи частотами в десятки-сотни кГц. В таких цепях любая паразитная составляющая, в плоть до неправильной разводки проводящих дорожек печатной платы, может сделать невозможной её работу.

Итак, индуктивность и емкость – это элементы, которые оказывают влияние на полное сопротивление и фронты токов и напряжений в зависимости от частоты. Наилучшим по частотным характеристикам являют элементы для поверхностного монтажа, благодаря как раз-таки их малым размерам.

На графике изображено отношение полного сопротивления резистора к активному на различных частотах

Рисунок 6 – На графике изображено отношение полного сопротивления резистора к активному на различных частотах

В полное сопротивление входит и активное сопротивление, и реактивные сопротивления паразитной индуктивностио и емкости. На графике можно наблюдать падение полного сопротивления с ростом частоты.

Конструкция резистора

Резисторы поверхностного монтажа дешевы и удобны при конвеерной автоматизированной сборке электронных устройств. Однако, они не так просты, как может показаться.

Внутреннее устройство SMD-резистора

Рисунок 7 – Внутреннее устройство SMD-резистора

Основой резистора является подложка из Al2O3 – окиси алюминия. Это хороший диэлектрик и материал с хорошей теплопроводностью, что не менее важно, так как в процессе работы вся мощность резистора выделяется в тепло.

В качестве резистивного слоя используется тонкая металлическая или оксидная пленка, например – хром, двуокись рутения (как изображено на рисунке выше). От материала из которого состоит эта пленка зависят характеристики резисторов. Резистивный слой отдельных резисторов представляет собой пленку толщиной до 10 мкм, из материала с низким ТКС (температурным коэффициентом сопротивления), что дает высокую температурную стабильность параметров и возможность создать высокопрецизионные элементы, пример такого материала – константан, однако номиналы таких резисторов редко превышают 100 Ом.

Контактные площадки резистора формируются из набора слоев. Внутренний контактный слой выполняют из дорогих материалов вроде серебра или палладия. Промежуточный – из никеля. А внешний – свинцово оловянный. Такая конструкция обусловлена необходимостью обеспечить высокую адгезию (связанность) слоев. От них зависит надежность контактов и шумы.

Для снижения паразитных составляющих приходят к следующим технологическим решении при формировании резистивного слоя:

Форма резистивного слоя

Рисунок 8 – форма резистивного слоя

Монтаж таких элементов происходит в печах, а в радиолюбительских мастерских с помощью паяльного фена, то есть потоком горячего воздуха. Поэтому при их изготовлении уделяется внимание температурной кривой нагрева и охлаждения.

Кривая нагрева и охлаждения при пайке SMD-резисторов

Рисунок 9 – кривая нагрева и охлаждения при пайке SMD-резисторов

Выводы

Использование компонентов поверхностного монтажа положительно сказалось на массогабаритных показателях радиоэлектронной аппаратуры, а также на частотных характеристиках элемента. Современная промышленность выпускает большую часть распространенных элементов в SMD-исполнении. В том числе: резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры, интегральные микросхемы.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика