Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Примеры принципиальных и монтажных электрических схем различного электрооборудования и систем электроснабжения для начинающих с подробным описанием принципа их работы, условные и буквенно-цифровые обозначения на схемах. Даны практические рекомендации по приемам и методам, которые позволят легко научиться понимать то, что начерчено на любых электрических схемах.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Электрические схемы / Электрические аппараты / Электротехнические устройства / Трансформаторы и электрические машины / Устройства контроля скорости электродвигателей


 Школа для электрика в Telegram

Устройства контроля скорости электродвигателей



В схемах торможения противотоком асинхронных электродвигателей широко применяют индукционное реле контроля скорости. С валом электродвигателя, угловую скорость которого необходимо контролировать, связывают входной вал реле 5, на котором установлен цилиндрический постоянный магнит 4.

При вращении электродвигателя поле магнита пересекает проводники короткозамкнутой обмотки 3 поворотного статора 6. В обмотке наводится ЭДС, величина которой пропорциональна угловой скорости вращения вала. Под ее воздействием в обмотке появляется ток и возникает сила взаимодействия, стремящаяся повернуть статор 6 в сторону вращения магнита.

При определенной частоте вращения сила возрастает настолько, что упор 2, преодолевая сопротивление плоской пружины, переключает контакты реле. Реле снабжено двумя контактными узлами: 1 и 7, которые переключаются в зависимости от направления вращения.

Рисунок 1. Индукционное реле контроля скорости

Индукционное реле контроля скорости имеет довольно сложную конструкцию и низкую точность, которая может быть приемлемой только для грубых систем управления. Более высокая точность контроля скорости может быть получена с помощью тахогенератора — измерительной микромашины, напряжение на зажимах которой прямо пропорционально скорости вращения.

Тахогенераторы используют в системах обратной связи регулируемого привода с большим диапазоном изменения скорости, и поэтому погрешность их составляет всего несколько процентов. Наибольшее распространение имеют тахогенераторы постоянного тока.

На рис. 2 показана схема реле контроля скорости электродвигателя М с применением тахогенератора G, в цепь якоря которого включено электромагнитное реле К и регулировочный реостат R. Когда напряжение на зажимах якоря тахогенератора превысит напряжение срабатывания, реле производит переключение во внешней цепи.

Реле контроля скорости с тахогенератором

Рисунок 2. Реле контроля скорости с тахогенератором

Схема тахометрического моста
Рисунок 3. Схема тахометрического моста

С увеличением сопротивления цепи якоря точность работы схемы повышается. Поэтому иногда реле подключают к тахогенератору через промежуточный полупроводниковый усилитель. Возможно также использование для этой цели полупроводниковых бесконтактных пороговых элементов, обладающих стабильным напряжением срабатывания.

Надежность работы схемы может быть повышена, если тахогенератор постоянного тока заменить бесконтактным асинхронным тахогенератором.

Асинхронный тахогенератор имеет полый немагнитный ротор, выполненный в виде стакана. На статоре размещены две обмотки, находящиеся под углом 90° друг к другу. Одну из обмоток включают в сеть переменного тока. С другой обмотки снимают синусоидальное напряжение, пропорциональное частоте вращения ротора. Частота выходного напряжения всегда равна частоте сети.

тахогенераторВ современных исполнительных электродвигателях постоянного тока тахогенератор встраивают в один корпус с машиной и устанавливают на одном валу с основным двигателем. Это уменьшает пульсации выходного напряжения и повышает точность регулирования скорости.

В электродвигателях серии ПБСТ обычно применяют тахогенераторы постоянного тока типа ПТ-1 с электромагнитным возбуждением. Высокомоментные электродвигатели постоянного тока имеют встроенный тахогенератор с возбуждением от постоянных магнитов.

В тех случаях, когда электродвигатель М постоянного тока тахогенератора не имеет, его скорость можно контролировать измеряя ЭДС якоря. Для этого используют схему тахометрического моста, который образован двумя резисторами: R1 и R2, якорем Rя и добавочными полюсами машины Rдп. Выходное напряжение тахометрического моста Uвых = U1 - Uдп , или

Uвых = (Rдп / Rдп + Rя) х Е = (Rдп / Rдп + Rя) х сω

Последнее равенство справедливо при условии постоянства магнитного потока электродвигателя. Включая на выходе тахометрического моста пороговый элемент, получают реле, настроенное на определенную угловую скорость вращения. Точность тахометрического моста невелика из-за непостоянства сопротивления щеточного контакта и нарушения равновесия при нагреве сопротивления.

Если электродвигатель постоянного тока работает на искусственной характеристике и в цепь якоря включено большое добавочное сопротивление, функции реле скорости может выполнить реле напряжения, включенное на зажимы якоря.

Напряжение на якоре электродвигателя Uя = E + IяRя.

Поскольку Iя = (U - Е) / (Rя + Rдоб), получим Uя = (Rдоб / (Rя + Rдоб)) х Е + (Rя / (Rя + Rдоб)) х U, то вторым слагаемым можно пренебречь и считать напряжение на зажимах якоря прямо пропорциональным ЭДС и скорости вращения электродвигателя.

Контроль скорости с помощью реле напряжения

Рисунок 4. Контроль скорости с помощью реле напряжения

Центробежное реле контроля скорости
Рисунок 5. Центробежное реле контроля скорости

Очень простую конструкцию имеют центробежные реле скорости. Основанием реле служит пластмассовая планшайба 4, установленная на валу, скорость вращения которого необходимо контролировать. На планшайбе закрепляются плоская пружина 3 с массивным подвижным контактом 2 и неподвижный регулируемый контакт 1. Пружина выполнена из специальной стали, модуль упругости которой практически не зависит от изменения температуры.

При вращении планшайбы на подвижный контакт действует центробежная сила, которая при определенной скорости вращения преодолевает сопротивление плоской пружины и производит переключение контактов. Токоподвод к контактному узлу осуществляют через контактные кольца и щетки, которые на рисунке не показаны. Такие реле используют в системах стабилизации скорости микродвигателей постоянного тока. Несмотря на свою простоту, система обеспечивает поддержание скорости с погрешностью порядка 2%.

Устройства контроля скорости электродвигателей

 

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика