Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Про электричество для начинающих в доступном изложении. Как работает электричество. Здесь нет сухих и нудных лекций, а просто и понятно объясняются все ключевые термины, самые важные понятия, законы и явления.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Электричество для чайников / Про электричество / Заряд и разряд конденсатора


 Школа для электрика в Telegram

Заряд и разряд конденсатора



Заряд и разряд конденсатора - это процессы, при которых конденсатор накапливает или отдает электрический заряд на своих обкладках. Заряд и разряд конденсатора происходят при подключении его к источнику напряжения или к сопротивлению соответственно.

При зарядке конденсатора по цепи течет ток, который уменьшается по экспоненциальному закону, пока напряжение на конденсаторе не сравняется с напряжением источника. При этом заряд на обкладках конденсатора увеличивается по тому же закону, пока не достигнет максимального значения, равного произведению емкости конденсатора и напряжения источника.

При разрядке конденсатора по цепи течет ток в противоположном направлении, который также уменьшается по экспоненциальному закону, пока напряжение на конденсаторе не станет равным нулю. При этом заряд на обкладках конденсатора уменьшается по тому же закону, пока не станет равным нулю.

Подробно про заряд и разряд конденсаторы читайте дальше в статье.

Конденсаторы представляют собой пассивные электрические компоненты с двумя выводами, которые накапливают потенциальную энергию в электрическом поле. В простейшей форме они состоят из двух проводящих пластин, разделенных изолятором.

Они характеризуются емкостью. Единицей емкости является фарад (Ф), определяемый как один кулон на вольт (1 Кл/В).

Конденсаторы широко используются в различных электронных и электротехнических приложениях.

В электронных схемах они используются для блокировки постоянного тока и пропускания переменного тока. В сетях аналоговых фильтров они используются для сглаживания выходных сигналов источников питания. В резонансных схемах они используются для настройки радиоприемников на заданные частоты.

Конденсатор в электронной схеме

Конденсатор в электронной схеме

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора. 

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е.

При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+q), а вторая обкладка получает равный по величине отрицательный заряд (-q).

Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

Схема заряда конденсатора

Pис. 1. Схема заряда конденсатора 

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов.

Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током Iзар. 

Зарядный ток в цепи протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора.

График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.

Графики напряжения и тока при заряде конденсатора

Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома ioзар = E/Ri, так как вся э. д. с. генератора приложена к сопротивлению Ri.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно на конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е - U с. Поэтому iзар = (E-Uс)/Ri

Отсюда видно, что с увеличением Uс уменьшается iзар и при Uс = E зарядный ток становится равным нулю.

Про закон Ома подробнее смотрите здесь: закон Ома для участка цепи

Продолжительность процесса заряда конденсатора зависит от двух величин: 

1) от внутреннего сопротивления генератора Ri

2) от емкости конденсатора С. 

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением R= 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: Ri = 5 Ом. 

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Графики зарядных токов при разных сопротивлениях

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением R= 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2). 

Величина начального зарядного тока ioзар = Е/Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Графики зарядных токов при разных емкостях

Рис. 3. Графики зарядных токов при разных емкостях

Разряд конденсатора

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление. 

На обкладках конденсатора имеется напряжение Uс, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током iразр. 

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равной нулю: Uc=0

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Ucо =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее. 

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома iразр = Uc/R

Графики напряжения и токов при разряде конденсатора

Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается. 

Продолжительность разряда зависит: 

1) от емкости конденсатора С 

2) от величины сопротивления R, на которое конденсатор разряжается. 

Чем больше сопротивление R, тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно. 

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 — при R = 40 Ом, iоразр = Ucо/R = 100/40 = 2,5 А и кривая 2 - при 20 Ом iоразр = 100/20 = 5 А.

Графики разрядных токов при разных сопротивлениях

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени.

Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление =40 Ом (рис. 6: кривая 1 — для конденсатора емкостью 10 мкф и кривая 2 — для конденсатора емкостью 20 мкф).

Графики разрядных токов при разных емкостях

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток.

Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь. 

Однако конденсатор может пропускать переменный ток, так как при изменении полярности напряжения на источнике меняется и направление тока в цепи. При этом конденсатор постоянно заряжается и разряжается, создавая в цепи переменное напряжение и ток.

Чем выше частота переменного тока, тем быстрее происходят процессы зарядки и разрядки конденсатора, и тем больше ток, который он пропускает. Это свойство конденсатора называется емкостным сопротивлением, которое обратно пропорционально частоте тока и емкости конденсатора.

Энергия конденсатора 

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор.

Энергия конденсатора зависит от емкости конденсатора и напряжения между его обкладками. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = Wс = СU2/2

Пример. Конденсатор С=10 мкф заряжен до напряжения Uв = 500 В. Необходимо определить энергию, которая выделится в виде тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = Wс = СU2/2 = (10 х 10-6 х 500)/2 = 1,25 дж.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика