Заморозьте воду — и она расширится, потому что при замерзании ее молекулы выстроятся в структуру определенной формы, при которой вода займет больший объем, нежели та же вода в жидком состоянии.
Похожим образом ведет себя намагничиваемое тело, например, помещенное во внешнее магнитное поле: состояние намагниченности тела изменяется, в результате, в большей или в меньшей степени, изменяются и линейные размеры данного тела. В этом и заключается явление, называемое магнитострикцией.
Физикам хорошо известно, что намагниченность тела может изменяться не только в результате непосредственно намагничивания, но и в результате фазового перехода.
Если расплавить намагниченный кусок железа, намагниченность железа изменится. Так или иначе, что бы ни явилось истинной причиной изменения магнитного состояния тела, если при этом изменяются его линейные размеры, - значит мы наблюдаем магнитострикцию.
Магнитострикцию как явление открыл и описал английский физик Джеймс Прескотт Джоуль. Он сделал это в феврале 1841 года в своей статье под названием «On a new class of magnetic forces», напечатанной в издании «The Annals of Electricity, Magnetism, and Chemistry; and Guardian of Experimental Science, Volume 8» на стр. 219-224.
Суть его открытия состояла в том, что при охлаждении ферромагнетика или ферромагнитика ниже точки Кюри, в образце появляется спонтанная намагниченность, при этом происходит деформация кристаллической решетки в объеме охлаждаемого вещества.
Можно сказать, что магнитострикция — это деформация кристаллической решетки вещества, при которой изменяется состояние его намагниченности.
Во время магнитострикции могут изменяться как линейные размеры предмета, так и его объем. Кроме того линейные изменения могут происходить вдоль намагничивающего поля (продольная линейная магнитострикция) либо поперек него (поперечная линейная магнитострикция).
Порядок относительных изменений линейных размеров, характерных для разных веществ, лежит в диапазоне от 0,000001 до 0,01 от исходного размера.
Несмотря на кажущиеся столь небольшими относительные изменения размеров образца, магнитострикция связана с магнитными свойствами вещества и с образованием доменных магнитных структур.
Кроме того имеют место многочисленные технические приложения магнитострикции: линии задержки, фильтры, приемники и излучатели в ультразвуковом диапазоне.
Лучшие показатели магнитострикции наблюдаются у соединений и сплавов редкоземельных металлов, худшие — у пара- и диамагнетиков.
Величина и направление намагниченности влияет на магнитострикцию. К примеру, для кубических кристаллов анизотропная составляющая магнитострикции характеризуется двумя константами, показывающими относительные растяжения в кристаллографических направлениях 100 (по направлению вдоль ребра куба) и 111 (по направлению вдоль диагонали куба) при намагничивании в этих направлениях.
Константы магнитострикции могут иметь положительные и отрицательные значения, что зависит от текстуры кристалла, от его температуры, от наличия примесей и т. д.
Если в образце имеется магнитная доменная структура, то при нулевом H средняя магнитострикция может быть нулевой. Если начать повышать H, то магнитострикция начнет изменяться, описывая кривую, доходящую до состояния насыщения.
Если после достижения материалом насыщения продолжить увеличивать H, то дальнейшее вынужденное изменение величины магнитострикции будет небольшим. Теперь если начать уменьшать H, кривая изменения магнитострикции не обязательно совпадет с кривой, характерной для увеличения H. Это называется гистерезисом магнитострикции.
Мы поговорили о линейной магнитострикции. Что же касается объемной магнитострикции, то она ярко проявляет себя лишь в сильных магнитных полях (в районе 1 МА/м). Например, для железа характерное значение объемной магнитострикции составляет 0,000019. Замечено, что объекты разной формы, даже имея один и тот же состав, отличаются величиной объемной магнитострикции (то есть наблюдается «эффект формы»).
Смотрите также: Эффект Виллари, магнитоупругий эффект - явление обратное магнитострикции
Андрей Повный