Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте - называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).
Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.
Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, - данное положение прямо следует из Правила Ленца.
Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.
Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.
В радиотехнике, в электротехнике, в СВЧ-технике, - используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон - до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.
Итак, дроссель — катушка самоиндукции, применяемая в качестве большого индуктивного сопротивления для тех или иных переменных токов.
В том случае, если дроссель должен представлять большое индуктивное сопротивление токам низкой частоты, он должен обладать большой индуктивностью, и в этом случае он делается со стальным сердечником. Дроссель высокой частоты (представляющий большое сопротивление токам высокой частоты) делается обычно без сердечника.
Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.
Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.
Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.
Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.
Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение - Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).
Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, - крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.
Виды дросселей
Безвитковые дроссели предназначены для подавления высокочастотных помех в электрических цепях. Обычно они представляют собой ферритовый сердечник, выполненный в виде полого цилиндра (или кольца круглого сечения), через который проходит проводник.
Реактивное сопротивление такого дросселя на низких частотах (в том числе на промышленной частоте) мало, а на высоких частотах (0,1 МГц…2,5 ГГц) велико. Таким образом, если в кабеле возникает высокочастотная помеха, то такой дроссель ее подавляет с вносимым затуханием 10…15 дБ. Для создания магнитопроводов безвитковых дросселей применяют марганец-цинковые и никель-цинковые ферриты.
Дроссели переменного тока широко используются в качестве реактивных (индуктивных) сопротивлений, элементов LR- и LC-контуров, а также в выходных фильтрах преобразователей переменного тока. Такие дроссели изготавливают с индуктивностью от десятых долей микрогенри до сотен генри на токи от ~1 мА до 10 А. Они имеют одну обмотку, расположенную на магнитопроводе из ферро- или ферримагнитного материала.
При проектировании дросселя переменного тока необходимо учитывать его следующие основные номинальные параметры: требуемую мощность (наиболее допустимое значение тока), частоту тока, добротность и массу.
Повысить добротность можно различными методами. С точками зрения изготовления магнитопроводов необходимо учитывать, что повысить добротность можно за счет:
-
выбора магнитного материала с высокой магнитной проницаемостью и малыми потерями;
-
увеличения площади поперечного сечения магнитопровода;
-
введения немагнитного зазора.
Сглаживающие дроссели – элементы преобразователей, предназначенные для уменьшения переменной составляющей напряжения или тока на входе или выходе преобразователя. Такие дроссели имеют одну обмотку, в токе которой (в отличие от дросселей переменного тока) присутствуют как переменная, так и постоянная составляющие. Обмотка дросселя включается последовательно с нагрузкой.
Дроссель должен иметь большую индуктивность (индуктивное сопротивление). На его обмотке происходит падение переменной составляющей напряжения, в то время как постоянная составляющая (за счет малого активного сопротивления обмотки) выделятся на нагрузке.
Составляющие тока создают в магнитопроводе дросселя постоянный магнитный поток (который играет роль подмагничивающего) и переменный поток, изменяющийся по синусоидальному закону. За счет постоянной составляющей тока магнитный поток (индукция) в магнитопроводе изменяется в соответствии с начальной кривой намагничивания, в то время как за счет переменной составляющей перемагничивание осуществляется по частным циклам при соответствующих значениях тока.
При увеличении тока переменная составляющая магнитного потока уменьшается (при постоянстве переменной составляющей тока), что приводит к уменьшению дифференциальной магнитной проницаемости и, следовательно, к уменьшению индуктивности дросселя. Физически уменьшение индуктивности с увеличением подмагничивающего тока связано с тем, что по мере увеличения этого тока магнитопровод дросселя все более и более насыщается.
Дроссели насыщения используются в качестве регулируемых индуктивных сопротивлений в цепях переменного тока. Такие дроссели имеют не менее двух обмоток, одна из которых (рабочая) включается в цепь переменного тока, а другая (управляющая) – в цепь постоянного тока. В принципе работы дросселей насыщения лежит использование нелинейности кривой В(Н) магнитопроводов при их намагничивании управляющим и рабочим токами.
Магнитопроводы таких дросселей не имеют немагнитного зазора. Основными особенностями дросселей насыщения (по сравнению со сглаживающими дросселями) являются значительно большее значение переменной составляющей магнитного потока в магнитопроводе и синусоидальный характер ее изменения.
Развитие радиоэлектронной аппаратуры предъявляет к дросселям различные требования, в частности требует уменьшения габаритов и снижения уровня электромагнитных помех в условиях высокой плотности монтажа компонентов. Для решения этой задачи были разработаны многослойные ферритовые чип-фильтры на основе поверхностного монтажа на печатной плате.
Такие устройства получают по тонкопленочной технологии. На подложку наносятся тонкие слои феррита (например, тайваньская компания «Chilisin Electronics» использует Ni–Zn-феррит), между которыми формируется структура полувитка катушки.
После нанесения слоев, количество которых может достигать нескольких сотен, производится спекание, при котором формируется объемная катушка с ферритовым магнитопроводом. Благодаря такой конструкции минимизируются поля рассеяния и соответственно практически исключается взаимное влияние элементов друг на друга, так как силовые линии в основном замыкаются внутри магнитопровода.
Многослойные ферритовые чип-фильтры: а – технология изготовления; б – внешний вид, соотнесенный со шкалой с шагом 1 мм
Многослойные ферритовые чип-фильтры используются для фильтрации высокочастотных помех в силовых и сигнальных цепях бытовой электроники, источников питания и др. Основными производителями чип-фильтров являются компании «Chilisin Electronics», «TDK Corporation» (Япония), «Murata Manufacturing Co., Ltd» (Япония), «Vishay Intertechnology» (США) и др.
Дроссели с магнитопроводом, изготовленным из магнитодиэлектрика на основе карбонильного железа применяются в радиоаппаратуре, работающей в диапазоне 0,5…100,0 МГц.
В дросселях могут использоваться магнитопроводы, изготовленные из всех известных магнитомягких материалов: электротехнических сталей, ферритов, магнитодиэлектриков, а также прецизионных, аморфных и нанокристаллических сплавов.
В отличие от дросселей в трансформаторах, магнитных усилителях и других подобных устройствах магнитопровод служит для концентрации магнитного потока при минимизации магнитных потерь. В этом случае основная функция, которую выполняет магнитопровод, практически исключает его изготовление из магнитодиэлектрика, который обладает малой относительной магнитной проницаемостью.
Широкая номенклатура ферритов различных марок, предназначенных для работы в аналогичных с магнитодиэлектриками диапазонах частот, сужает область применения магнитодиэлектриков для изготовления магнитопроводов электромагнитных устройств.
Применение дросселей
Итак, по назначению электрические дроссели подразделяются на:
Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.
Дроссели для пуска двигателей - ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).
Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.
Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.
В то время в цепях питания вакуумных дуговых ламп применялись дроссельные усилители - это были специальные усилители, в котором анодными нагрузкамиламп служили дроссели.
Выделяющееся на дросселе Др усиленное переменное напряжение подавалось на сетку следующей лампы через разделительный конденсатор С. Вследствие того, что индуктивное сопротивление дросселя растет с частотой, дроссельный усилитель не мог давать сколько-нибудь равномерного усиления в широкой полосе частот и применялся только в тех случаях, когда нужно усиливать сравнительно узкую полосу частот и большой равномерности усиления в этой полосе не требовалось.