Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Трансформаторы и электрические машины / Режимы работы трансформатора


 Школа для электрика в Telegram

Режимы работы трансформатора



Режимы работы трансформатораВ зависимости от величины сопротивления нагрузки трансформатор может работать в трех режимах:

1. Холостой ход при сопротивлении нагрузки zн = ∞.

2. Короткое замыкание при zн = 0.

3. Нагрузочный режим при 0 < zн < ∞.

Имея параметры схемы замещения, можно анализировать любой режим работы трансформатора. Сами параметры определяют на основе опытов холостого хода и короткого замыкания. При холостом ходе вторичная обмотка трансформатора является разомкнутой.

Опыт холостого хода трансформатора проводят для определения коэффициента трансформации, мощности потерь в стали и параметров намагничивающей ветви схемы замещения, проводят его обычно при номинальном напряжении первичной обмотки.

Для однофазного трансформатора на основе данных опыта холостого хода можно рассчитать:

– коэффициент трансформации

– процентное значение тока холостого хода

– активное сопротивление ветви намагничивания r0, определяемое из условия

– полное сопротивление ветви намагничивания

– индуктивное сопротивление ветви намагничивания

Часто определяют также коэффициент мощности холостого хода:

В некоторых случаях опыт холостого хода проводят для нескольких значений напряжения первичной обмотки: от U1 ≈ 0,3U1н до U1 ≈ 1,1U1н. По полученным данным строят характеристики холостого хода, которые представляют собой зависимость P0, z0, r0 и cosφ в функции от напряжения U1. Пользуясь характеристиками холостого хода, можно установить значения определяемых величин при любом значении напряжения U1.

Для определения напряжения короткого замыкания, потерь в обмотках и сопротивлений rк и xк проводят опыт короткого замыкания. При этом к первичной обмотке подводят такое пониженное напряжение, чтобы токи обмоток короткозамкнутого трансформатора были равны своим номинальным величинам, т. е. I1к = I1н, I2к = I2н. Напряжение на первичной обмотке, при котором отмеченные условия выполняются, называется номинальным напряжением короткого замыкания Uкн.

Учитывая, что Uкн обычно составляет всего 5–10 % от U1н, поток взаимоиндукции сердечника трансформатора при опыте короткого замыкания в десятки раз меньше, чем в номинальном режиме, и сталь трансформатора ненасыщенна. Поэтому потерями в стали пренебрегают и считают, что вся подводимая к первичной обмотке мощность Pкн расходуется на нагрев обмоток и определяет величину активного сопротивления короткого замыкания rк.

Во время проведения опыта измеряют напряжение Uкн, ток I1к = I1н и мощность Pкн первичной обмотки. По этим данным можно определить:

– процентное напряжение короткого замыкания

– активное сопротивление короткого замыкания

– активные сопротивления первичной и приведенной вторичной обмоток, приблизительно равные половине сопротивления короткого замыкания

– полное сопротивление короткого замыкания

– индуктивное сопротивление короткого замыкания

– индуктивное сопротивление первичной и приведенной вторичной обмоток, приблизительно равны половине индуктивного сопротивления короткого замыкания


– сопротивления вторичной обмотки реального трансформатора:

– индуктивное, активное и полное процентные напряжения короткого замыкания:

В нагрузочном режиме очень важно знать, как влияют параметры нагрузки на КПД и изменение напряжения на зажимах вторичной обмотки.

Коэффициентом полезного действия трансформатора называется отношение активной мощности, передаваемой нагрузке, к активной мощности, подводимой к трансформатору.

КПД трансформатора имеет высокое значение. У силовых трансформаторов небольшой мощности он составляет примерно 0,95, а у трансформаторов мощностью в несколько десятков тысяч киловольт-ампер доходит до 0,995.

Определение КПД по формуле с использованием непосредственно измеренных мощностей P1 и P2 даёт большую погрешность. Удобнее эту формулу представить в другом виде:

где – сумма потерь в трансформаторе.

В трансформаторе имеются два вида потерь: магнитные потери, вызванные прохождением магнитного потока по магнитопроводу, и электрические потери, возникающие при протекании тока по обмоткам.

Так как магнитный поток трансформатора при U1 = const и изменении вторичного тока от нуля до номинального практически остаётся постоянным, то и магнитные потерив этом диапазоне нагрузок также можно принять постоянными и равными потерям холостого хода.

Электрические потери в меди обмоток ∆Pм пропорциональны квадрату тока. Их удобно выразить через потери короткого замыкания Pкн, полученные при номинальном токе,

где β – коэффициент нагрузки,

Расчетная формул для определения КПД трансформатора:

где Sн – номинальная полная мощность трансформатора; φ2 – угол сдвига фаз между напряжением и током в нагрузке.

Максимум КПД можно найти, приравняв первую производную к нулю. При этом получим, что КПД имеет максимальные значения при такой нагрузке, когда постоянные (не зависящие от тока) потери P0 равны переменным (зависящим от тока), откуда

У современных силовых масляных трансформаторов βопт = 0,5 - 0,7. С такой нагрузкой трансформатор наиболее часто работает в процессе эксплуатации.

График зависимости η = f(β) изображен на рисунке 1.

Рисунок 1. Кривая изменения КПД трансформатора в зависимости от коэффициента нагрузки

Для определения процентного изменения напряжения на вторичной обмотке однофазного трансформатора используют уравнение

где uКА и uКР – активная и реактивная составляющие напряжения короткого замыкания, выраженные в процентах.

Изменение напряжения трансформатора зависит от коэффициента нагрузки (β), её характера (угла φ2) и составляющих напряжения короткого замыкания (uКА и uКР).

Внешней характеристикой трансформатора является зависимость при U1 = const и cosφ2 = const (рисунок 2).

Рисунок 2. Внешние характеристики трансформаторов средней и большой мощностей при различных характерах нагрузки

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика