Магнетрон - специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.
Менее распространены основанные на том же принципе амплитроны (платинотроны), клистроны, лампы бегущей волны.
Магнетрон является наиболее совершенным генератором сверхвысоких частот большой мощности. Это хорошо эвакуированная лампа с электронным потоком, управляемым электрическим и магнитным полями. Они позволяют получать весьма короткие волны (до долей сантиметра) при значительных мощностях.
В магнетронах используется движение электронов во взаимно перпендикулярных электрическом и магнитном полях, создаваемых в кольцевом зазоре между катодом и анодом. Между электродами подается анодное напряжение, создающее радиальное электрическое поле, под действием которого вырываемые из подогретого катода электроны устремляются к аноду.
Анодный блок помещается между полюсами электромагнита, который создает в кольцевом зазоре магнитное поле, направленное по оси магнетрона. Под действием магнитного поля электрон отклоняется от радиального направления и движется по сложной спиральной траектории. В пространстве между катодом и анодом образуется вращающееся электронное облако с языками, напоминающее ступицу колеса со спицами. Пролетая мимо щелей объемных резонаторов анода, электроны возбуждают в них высокочастотные колебания.
Рис. 1. Анодный блок магнетрона
Каждый из объемных резонаторов представляет собой колебательную систему с распределенными параметрами. Электрическое поле концентрируется у щелей, а магнитное поле сосредоточено внутри полости.
Вывод энергии из магнетрона осуществляется при помощи индуктивной петли, помещаемой в один или чаще два соседних резонатора. По коаксиальному кабелю энергия подводится к нагрузке.
Рис. 2. Устройство магнетрона
Нагрев токами СВЧ осуществляется в волноводах круглого или прямоугольного сечения или в объемных резонаторах, в которых возбуждаются электромагнитные волны простейших форм ТЕ10(Н10) (в волноводах) или ТЕ101 (в объемных резонаторах). Нагрев может осуществляться и излучением электромагнитной волны на объект нагрева.
Питание магнетронов осуществляется выпрямленным током с упрощенной схемой выпрямителя. Установки очень малой мощности могут питаться переменным током.
Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.
Рис. 2. Магнетрон в СВЧ-печи
Простота устройства и относительно невысокая стоимость магнетронов в сочетании с высокой интенсивностью нагрева и разнообразием применения токов СВЧ открывают перед ними большие перспективы применения в различных областях промышленности, сельского хозяйства (например, в установках диэлектрического нагрева) и в быту (СВЧ-печи).
Работа магнетрона
Итак, магнетрон это электронная лампа специальной конструкции, служащая для генерации колебаний ультравысоких частот (в диапазоне дециметровых и сантиметровых волн). Ее особенностью является применение постоянного магнитного поля (для создания нужных путей движения электронов внутри лампы), откуда магнетрон и получил свое название.
Многокамерный магнетрон, идея которого была впервые предложена М. А. Бонч-Бруевичем и осуществлена советскими инженерами Д. Е. Маляровым и Н. Ф. Алексеевым, представляет собой сочетание электронной лампы с объемными резонаторами. Этих объемных резонаторов в магнетроне делается несколько, почему этот тип и получил название многокамерного или многорезонаторного.
Принцип устройства и работы многокамерного магнетрона заключается в следующем. Анод прибора представляет собой массивный полый цилиндр, во внутренней поверхности которого сделан ряд полостей с отверстиями (эти полости и являются объемными резонаторами), катод расположен по оси цилиндра.
Магнетрон помещается в постоянное магнитное поле, направленное вдоль оси цилиндра. На вылетающие из катода электроны со стороны этого магнитного поля действует сила Лоренца, которая искривляет пути электронов.
Магнитное поле подбирается таким, чтобы большинство электронов двигалось по искривленным путям, не касающимся анода. Если в камерах прибора (объемных резонаторах) происходят электрические колебания (небольшие колебания в объемах всегда возникают по разным причинам, например, в результате включения анодного напряжения), то переменное электрическое поле существует не только внутри камер, но и снаружи, около отверстий (щелей).
Электроны, пролетая вблизи анода, попадают в эти поля и в зависимости от направления поля либо ускоряются, либо тормозятся в них. Когда электроны ускоряются полем, то они отбирают энергию от резонаторов, наоборот, когда они тормозятся, то отдают часть своей энергии резонаторам.
Если бы число электронов, которые ускоряются и тормозятся, было бы одинаково, то в среднем они не отдавали бы резонаторам энергии. Но электроны, которые тормозятся, после этого имеют меньшую скорость, чем та, которую они получили при движении к аноду. Поэтому они уже не обладают достаточной энергией, чтобы вернуться к катоду.
Наоборот, те электроны, которые ускорялись полем резонаторов, обладают после этого энергией, большей, чем нужно для того, чтобы вернуться к катоду. Следовательно, электроны, которые, попав в поле первого резонатора, ускоряются в нем, вернутся на катод, а те, которые затормозятся в нем, не вернутся па катод, а будут двигаться по криволинейным путям около анода и попадать в поле следующих резонаторов.
При соответствующей скорости движения (которая определенным образом связана с частотой колебаний в резонаторах) эти электроны будут попадать в поле второго резонатора при такой фазе колебаний в нем, что и в поле первого резонатора, поэтому в поле второго резонатора они также будут тормозиться.
Таким образом, при соответствующем подборе скорости электронов, т. е. анодного напряжения (а также и магнитного поля, которое не изменяет величины скорости электронов, по изменяет ее направление), можно добиться такого положения, что отдельный электрон будет либо ускоряться полем только одного резонатора, либо тормозиться полем нескольких резонаторов.
Поэтому в среднем электроны будут больше энергии отдавать резонаторам, чем забирать от них, т. е. колебания, происходящие в резонаторах, будут нарастать и в конце концов в них установятся колебания с постоянной амплитудой.
Рассмотренный нами упрощенно процесс поддержания колебаний в резонаторах сопровождается еще одним важным явлением, т. к. электроны, для того чтобы они тормозились полем резонатора, должны влетать в это поле при определенной фазе колебаний резонатора, то очевидно, что они должны двигаться не равномерным потоком (т. к. тогда они влетали бы в поле резонаторов в любые, а не в определенные моменты времени, а в виде отдельных сгустков.
Весь поток электронов для этого должен представлять собой как бы звезду, в которой электроны движутся внутри отдельных лучей, а вся звезда в целом вращается вокруг оси магнетрона с такой скоростью, что ее лучи в нужные моменты подходят к каждой камере. Процесс образования отдельных сгустков в электронном потоке называется фазовой фокусировкой и осуществляется автоматически под действием переменного поля резонаторов.
Современные магнетроны способны создавать колебания вплоть до самых высоких частот сантиметрового диапазона (волны до 1 см и даже короче) и отдавать мощность до нескольких сот ватт при непрерывном излучении и нескольких сот киловатт при импульсном излучении.
Смотрите также: Примеры применения постоянных магнитов в электротехнике и электроэнергетике