Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.
При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:
-
химической;
-
световой;
-
тепловой и других.
Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.
Электрический генератор можно определить как устройство, которое работает путем преобразования механической энергии в электрическую. Электрический генератор — это вращающаяся электрическая машина, которая преобразует энергию вращающегося ротора в универсально используемую электрическую энергию. Так что, по сути, генератор — это противоположность двигателя.
По виду вырабатываемой электроэнергии генераторы бывают:
1. постоянного тока;
2. переменного.
Электрический генератор на тепловой электростанции
Принцип работы простейшего генератора
Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.
В конструкции любого генератора реализуется принцип электромагнитной индукции, когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается постоянными магнитами в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.
При вращении рамки изменяется величина магнитного потока.
Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.
Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.
За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.
Принцип работы простейшего генератора постоянного тока
При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.
Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.
Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:
-
у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;
-
число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.
У генератора постоянного тока обмотки ротора располагают в пазах магнитопровода. Это позволяет сокращать потери наводимого электромагнитного поля.
Конструктивные особенности генераторов постоянного тока
Основными элементами устройства являются:
-
внешняя силовая рама;
-
магнитные полюса;
-
статор;
-
вращающийся ротор;
-
коммутационный узел со щётками.
Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.
Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.
Статор, называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора оснащен магнитными полюсами, образующими его магнитное силовое поле.
Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.
Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.
Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.
Основные типы конструкций генераторов постоянного тока
По типу питания обмотки возбуждения различают устройства:
1. с самовозбуждением;
2. работающие на основе независимого включения.
Первые изделия могут:
-
использовать постоянные магниты;
-
или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…
Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:
-
последовательно;
-
шунтами или параллельным возбуждением.
Один из вариантов подобного подключения показан на схеме.
Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.
Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.
Процесс образования якорной реакции
Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.
Способами ее снижения являются:
-
компенсации магнитных полей за счет подключения дополнительных полюсов;
-
настройка сдвига положения коллекторных щеток.
Преимущества генераторов постоянного тока
К ним относят:
-
отсутствие потерь на гистерезис и образование вихревых токов;
-
работа в экстремальных условиях;
-
пониженный вес и маленькие габариты.
Принцип работы простейшего генератора переменного тока
Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:
-
магнитное поле;
-
вращающаяся рамка;
-
коллекторный узел со щетками для отвода тока.
Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.
За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.
Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.
Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:
-
коллекторного узла вращающегося ротора;
-
конфигурации обмоток на роторе.
Конструктивные особенности промышленных генераторов переменного тока
Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.
Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.
Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.
В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.
Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.
Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.
Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.
Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.
На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.
Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.
При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.
Особенности синхронных генераторов
Принцип действия
Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.
В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.
Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.
В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.
При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.
Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.
Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.
Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.
Схемы возбуждения синхронных генераторов
Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:
1. контактном методе;
2. бесконтактном способе.
В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».
Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.
При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».
Разновидностями бесконтактной схемы являются:
1. система самовозбуждения от собственной обмотки статора;
2. автоматизированная схема.
При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.
У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.
Автоматическая схема создания самовозбуждения включает использование:
-
трансформатора напряжения ТН;
-
автоматизированного регулятора возбуждения АВР;
-
трансформатора тока ТТ;
-
выпрямительного трансформатора ВТ;
-
тиристорного преобразователя ТП;
-
блока защиты БЗ.
Особенности асинхронных генераторов
Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.
При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.
Конструкцию ротора у асинхронных генераторов изготавливают:
-
короткозамкнутой;
-
фазной;
-
полой.
Асинхронные генераторы могут иметь:
1. независимое возбуждение;
2. самовозбуждение.
В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.
Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.
Первые электрические генераторы
Все началось в начале 19 века с экспериментов с новым явлением – электрическим током, когда было обнаружено, что ток, протекающий по проводнику, каким-то образом влияет на стрелку компаса.
Это означает, что электрический ток создает определенное магнитное поле, на которое реагирует стрелка. За счет увеличения силы тока и увеличения числа токонесущих проводников (например, в виде витков катушки на железном сердечнике) создается более сильное магнитное поле.
Электрический заменитель природных постоянных магнитов — электромагнит — увидел свет. В то время гальванические элементы (батареи) были эксклюзивным поставщиком постоянного тока.
Несколько лет спустя английский физик Майкл Фарадей предположил, что может существовать и обратное явление, когда магнитное поле вызывает появление электрического тока.
Путем ряда экспериментов он подтвердил свое предположение и открыл электромагнитную индукцию, которая до сих пор является основой всей электротехники и энергетики.
Электрогенератор с паровым двигателем. Гравюра из немецкого справочника 1907 года.
Закон электромагнитной индукции гласит, что при изменении магнитного поля вблизи проводника на его концах создается (индуцируется) напряжение и по замкнутой цепи начинает протекать ток. Здесь важно слово «изменения», само по себе наличие постоянного магнитного поля не вызывает создания тока.
Первый электрический генератор Майкла Фарадея открыл человечеству многообещающий путь замены используемых в то время гальванических элементов (количество энергии которых очень ограничено) более мощными источниками и таким образом сделать электроэнергию доступной для более широкой области использования.
Скользящее взаимное движение магнита и проводника заменено вращением нити в поле статических магнитов (это упростило изменение поля) и простая нить заменена катушкой (больше витков последовательно давало большее выходное напряжение). Это создало основу для первых генераторов постоянного тока — динамо-машин.
Со временем мощность динамо увеличилась, и обычные магниты пришлось заменить более сильными электромагнитами с большим количеством катушек.
Электрический ток, производимый во вращающихся катушках, проходил через кольцо на валу ротора — своего рода механический переключатель, называемый коммутатором, который, вращая ротор, всегда подключал к выходу катушку с наибольшим наведенным напряжением. Динамо-машина вырабатывала постоянное напряжение.
После того, как было решено, что энергия и дальше будет идти по пути переменного тока, динамо-машины стали заменять генераторами переменного тока.
Генератор переменного тока на электростанции
Вместо коммутатора было всего два полных коллекторных кольца, на которых менялась полярность протекающего тока при каждом витке катушки. В более мощных генераторах роли статора и ротора поменялись местами.
Постоянный ток, подаваемый через кольца на подвижные катушки ротора, создавал вращающееся магнитное поле, а в неподвижных катушках статора генерировалось выходное переменное напряжение.
Еще более высокая мощность потребовала утроения количества катушек статора и получения трехфазного напряжения.
Все генераторы, поставляющие электроэнергию в одну и ту же электрическую сеть, должны соответствовать как минимум трем условиям: одинаковая частота, одно и тоже напряжение и одинаковая последовательность фаз.