Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Электротехнические материалы / Постоянные магниты - виды и свойства, формы, взаимодействие магнитов


 Школа для электрика в Telegram

Постоянные магниты - виды и свойства, формы, взаимодействие магнитов



Что такое постоянный магнит

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом.

Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Постоянные магниты - виды и свойства, взаимодействие магнитов

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же — как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит — это тело, обладающее своим собственным магнитным полем.

Магнит и магнитное поле

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита — магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.

Постоянный магнит является частью магнитных систем электротехнических изделий. Работа устройств с постоянными магнитами, как правило, основана на преобразовании энергии:

  • механической в механическую (сепараторы, магнитные муфты и т. п.);

  • механической в электромагнитную (электрогенераторы, громкоговорители и т. п.);

  • электромагнитной в механическую (электродвигатели, динамики, магнитоэлектрические системы и т. п.);

  • механической во внутреннюю (тормозные устройства и т. п.).

К постоянным магнитам предъявляются следующие требования:

  • высокая удельная магнитная энергия;

  • минимальные габариты при заданной напряженности поля;

  • сохранение работоспособности в широком диапазоне рабочих температур;

  • устойчивость к воздействию внешних магнитных полей; – технологичность;

  • низкая стоимость исходного сырья;

  • стабильность магнитных параметров во времени.

Разнообразие задач, решаемых при помощи постоянных магнитов, вызывает необходимость создания множества форм их исполнения. Часто постоянным магнитам придается форма подковы (т. н. "подковообразные" магниты).

На рисунке приведены примеры форм промышленно выпускаемых постоянных магнитов на основе редкоземельных элементов с защитным покрытием. 

Промышленно выпускаемые постоянные магниты различной формы

Промышленно выпускаемые постоянные магниты различной формы: а – диск; б – кольцо; в – параллелепипед; г – цилиндр; д – шар; е – сектор полого цилиндра

Также выпускаются магниты из магнитотвердых металлических сплавов и ферритов в виде стержней круглого и прямоугольного сечения, а также трубчатые, С-образные, подковообразные, в виде пластин прямоугольной формы и др.

После того как материалу придана форма, он должен быть намагничен, т. е. помещен во внешнее магнитное поле, т.к. магнитные параметры постоянных магнитов определяются не только их формой или материалом, из которого они изготовлены, но и направлением намагничивания.  

Заготовки намагничивают, используя постоянные магниты, электромагниты постоянного тока или намагничивающие катушки, через которые пропускаются импульсы тока. Выбор способа намагничивания зависит от материала и формы постоянного магнита.

В результате сильного нагревания, толчков постоянные магниты могут частично или полностью потерять свои магнитные свойства (размагнититься).

Характеристики размагничивающего участка петли магнитного гистерезиса материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») — сила, препятствующая изменению магнитной поляризации ферромагнетиков.

Пока ферромагнетик не поляризован, т. е. элементарные токи не ориентированы, коэрцитивная сила препятствует ориентировке элементарных токов. Но когда ферромагнетик уже поляризован, она удерживает элементарные токи в ориентированном положении и после того, как внешнее намагничивающее поле устранено.

Этим объясняется остаточный магнетизм, который наблюдается у многих ферромагнетиков. Чем больше коэрцитивная сила, тем сильнее выражено явление остаточного магнетизма.

Итак, коэрцитивная сила — это значение напряжённости магнитного поля, необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы в системе СИ — Ампер/метр. А магнитная индукция, как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов — порядка 1 Тесла.

Магнитный гистерезис — наличие последствия поляризации магнетиков приводит к тому, что намагничивание и размагничивание магнитного материала происходят неодинаково, т. к. намагничивание материала все время немного отстает от намагничивающего поля.

При этом часть энергии, затраченной на намагничивание тела, при размагничивании не возвращается обратно, а превращается в тепло. Поэтому многократное перемагничивание материала связано с заметными потерями энергии и иногда может вызвать сильное нагревание намагничиваемого тела.

Чем сильнее выражен гистерезис в материале, тем больше потери в нем при перемагничивании. Поэтому для магнитных цепей с переменным магнитным потоком применяют материалы, не обладающие гистерезисом (смотрите - Магнитопроводы электротехнических устройств).

Игровой набор с постоянными магнитами

Магнитные свойства постоянных магнитов могут изменяться под действием времени и внешних факторов, к которым относятся:

  • температура;

  • магнитные поля;

  • механические нагрузки;

  • радиация и др.

Изменение магнитных свойств характеризуется нестабильно- стью постоянного магнита, которая может быть структурной или магнитной.

Структурная нестабильность связана с изменениями кристаллической структуры, фазовыми превращениями, уменьшением внутренних напряжений и т. п. В этом случае исходные магнитные свойства могут быть получены восстановлением структуры (например, термообработкой материала).

Магнитная нестабильность обусловлена изменением магнитной структуры вещества магнита, которая стремится к термодинамическому равновесию с течением времени и под влиянием внешних воздействий. Магнитная нестабильность может быть:

  • обратимой (возвращение к исходным условиям восстанавливает исходные магнитные свойства);

  • необратимой (возращение исходных свойств может быть достигнуто только путем повторного намагничивания).

Грузоподьемный магнит

Постоянный магнит или электромагнит - что лучше?

Применение постоянных магнитов для создания постоянного магнитного поля вместо эквивалентных им электромагнитов позволяет:

  • уменьшить массогабаритные характеристики изделий;

  • исключить применение дополнительных источников питания (что упрощает конструкцию изделий, снижает стоимость их изготовления и эксплуатации);

  • обеспечить практически неограниченное время поддерживания магнитного поля в рабочих условиях (в зависимости от применяемого материала).

Недостатками постоянных магнитов являются:

  • хрупкость материалов, применяемых при их создании (это затрудняет механическую обработку изделий);

  • необходимость защиты от влияния влаги и плесневых грибков (для ферритов ГОСТ 24063), а также от воздействия повышенных влажности и температуры.

Виды и свойства постоянных магнитов

Ферритовые

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне — от -30°C до +270°C.

Применение ферритового магнита

Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в двигателях постоянного тока. В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Альнико (алюминий-никель-кобальт)

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы — до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств. 

Самариевые

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом — то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла — кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Самариевые магниты

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая электрогенераторами и мощными подъемными машинами.

Неодимовые магниты

Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов — хрупкость и низкая рабочая температура.

Магнитопласты

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитопласты

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Взаимодействие магнитов

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.

Взаимодействие магнитов

Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля.

Для примера проведем расчет силы взаимодействия двух постоянных магнитов. Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы Idl и просуммировать силы Ампера, действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера — это и будут силы взаимодействия между двумя магнитами.

Смотрите также: Использование постоянных магнитов в электротехнике и электроэнергетике

Андрей Повный, FB, ВК

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика