Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Про электричество для начинающих в доступном изложении. Как работает электричество. Здесь нет сухих и нудных лекций, а просто и понятно объясняются все ключевые термины, самые важные понятия, законы и явления.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Технические и научные статьи / Электричество для чайников / Ток, напряжение, мощность: основные характеристики электричества


 Школа для электрика в Telegram

Ток, напряжение, мощность: основные характеристики электричества



Ток, напряжение, мощность: основные характеристики электричестваЭлектроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости. 

Например, к нам в квартиру приходит по проводам электрическая энергия от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран. 

Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток), которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину. 

Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры. 

Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения. 

Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют: 

  • вязкость жидкости; 

  • засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.) 

На величину электрического сопротивления влияет несколько факторов: 

  • строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление

  • площадь поперечного сечения и длина токовода; 

  • температура. 

Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока). 

Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.

Основные храктеристики электрической энергии

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы конкретных схем. 

Рассмотрим несколько примеров их использования. 

Пример №1. Как рассчитать сопротивление и мощность 

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. 

На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления. 

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице. 

Рассчитываем: Р=24х0,5=12 Вт. 

Это же значение получим, если воспользуемся формулами (10) или (12). 

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. 

Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Пример №2. Как рассчитать ток 

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт. 

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт. 

По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А. 

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки. 

Отличия параметров электросхем на переменном токе 

Однофазные сети 

При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют реактивными нагрузками. Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы. 

На активных нагрузках отсутствует сдвиг фазы между током и напряжением. 

Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».

Переменный синусоидальный ток в однофазной сети
Сопротивление: активное, емкостное, индуктивное
Треугольник мощностей

Переменный синусоидальный ток в однофазной сети

Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т. 

Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае. 

Трехфазные сети 

В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол фи. За счет этой неравномерности создается ток I0 в нулевом проводе.

Переменный синусоидальный ток в трехфазной сети
Переменный синусоидальный ток в трехфазной сети
Переменный синусоидальный ток в трехфазной сети 

Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В). 

Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника. 

Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений. 

Также можно рассчитать общий ток потребления, зная величину полной мощности S. Для этого достаточно ее разделить на величину линейного напряжения. 

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика