Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике   Искать в Школе для электрика:
 
 

 

Справочник электрика / Полезная информация

 

Источники оптического излучения




Источниками оптического излучения (другими словами — источниками света) являются многие естественные объекты, а также искусственно создаваемые приборы, в которых те или иные виды энергии превращаются в энергию электромагнитного излучения с длиной волны от 10 нм до 1 мм.

В природе такими, давно ставшими нам привычними, источниками являются: солнце, звезды, молнии и т. д. Что касается искусственных источников, то, в зависимости от того, что за процесс приводит к возникновению излучения, - вынужденный он или спонтанный, - можно выделить когерентные и некогерентные источники оптического излучения.

Когерентное и некогерентное излучение

Лазер

Лазеры относятся к источникам когерентного оптического излучения. Их спектральная интенсивность очень велика, излучение отличается большой степенью направленности, характеризуется монохроматичностью, то есть длина волны у такого излучения постоянна.

Подавляющее же большинство источников оптического излучения — это источники некогерентные, излучение которых является результатом наложения друг на друга большого количества электромагнитных волн, испускаемых группой многих элементарных излучателей.

Искусственные источники оптического некогерентного излучения можно классифицировать по виду излучения, по роду энергии, преобразуемой в излучение, по способу преобразования данной энергии в свет, по назначению источника, по принадлежности к той или иной области спектра (инфракрасная, видимая или ультрафиолетовая), по виду конструкции, режиму использования и т. д.

Параметры света

Источники оптического излучения

Оптическое излучение имеет свои световые или энергетические характеристики. К фотометрическим характеристикам относятся: поток излучения, световой поток, сила света, яркость, светимость и т. д. Источники сплошного спектра различают по яркостной или цветовой температуре.

Порой важно знать создаваемую источником освещенность, либо какую-нибудь нестандартную характеристику, например такую как поток фотонов. Импульсные источники имеют определенную продолжительность действия и форму импульса излучения.

Световая отдача или спектральный коэффициент полезного действия определяют эффективность преобразования подаваемой к источнику энергии — в световую. Технические характеристики, такие как вводимая мощность и энергия, габариты светящегося тела, стойкость излучения, распределение света в пространстве и срок службы, - характеризуют искусственные источники оптического излучения.

Источники оптического излучения могут быть тепловыми с равновесно нагретым светящимся телом в конденсированном состоянии, а также люминесцирующими с неравномерно возбужденным телом в любом агрегатном состоянии. Особенная разновидность — плазменные источники, характер излучения у которых зависит от параметров плазмы и спектрального интервала, здесь излучение может быть или тепловым, или люминесцентным.

Солнце

Тепловые источники оптического излучения отличаются сплошным спектром, их энергетические характеристики подчиняются законам теплового излучения, где главными параметрами выступают температура и коэффициент излучения светящегося тела.

При коэффициенте 1 излучение эквивалентно излучению абсолютно черного тела, близкому к Солнцу с его температурой в 6000 К. Искусственные тепловые источники нагреваются электрическим током либо энергией химической реакции горения.

Пламя горения газообразного, жидкого или твердого горючего вещества характеризуется сплошным спектром излучения с температурой достигающей 3000 К, благодаря наличию раскаленных твердых микрочастиц. Если такие частицы отсутствуют, спектр будет полосатым или линейчатым, свойственным продуктам горения в газообразном состоянии или химическим веществам, намеренно вводимым в пламя с целью проведения спектрального анализа.

Устройство и применение тепловых источников

Пиротехника сигнального или осветительного назначения, такая как ракеты, фейерверки и т. д., содержат спрессованные составы, включающие в себя горючее вещество с окислителем. Источники инфракрасного излучения обычно представляют собой керамические или металлические тела различных размеров и форм, которые нагреваются пламенем либо посредством каталитического сжигания газа.

Лампа накаливания

Электрические излучатели инфракрасного спектра имеют вольфрамовые или нихромовые спирали, накаливаемые пропусканием через них тока, и размещаемые в теплостойких оболочках, либо сразу изготавливаемые в виде спиралей, стержней, лент, трубок, и т. д. - из тугоплавких металлов и сплавов, либо иных составов: графит, оксиды металлов, тугоплавкие карбиды. Излучатели такого рода применяют для обогрева помещений, в различных исследованиях и в промышленной тепловой обработке материалов.

Для инфракрасной спектроскопии применяют эталонные излучатели в форме стержней, такие как штифт Нернста и глобар, отличающиеся стабильной зависимостью коэффициента излучения от температуры в инфракрасной части спектра.

Метрологические измерения предполагают исследование излучений моделей абсолютно черных тел, у которых равновесное излучение зависит от температуры; такая модель представляет собой нагреваемую до температур до 3000 К полость из тугоплавкого материала определенной формы с небольшим входным отверстием.

Наиболее популярными тепловыми источниками излучения видимого спектра являются сегодня лампы накаливания. Они служат для целей освещения, сигнализации, в проекторах, прожекторах, кроме того выступают эталонами в фотометрии и пирометрии.

На современном рынке представлено более 500 типоразмеров ламп накаливания, начиная от миниатюрных, заканчивая мощными лампами для прожекторов. Тело накала, как правило, изготавливается в виде нити или спирали из вольфрама, и заключено в стеклянную колбу, заполненную либо инертным газом, либо вакуумом. Срок службы такой лампы обычно заканчивается перегоранием тела накала.

Галогенная лампа накаливания

Лампы накаливания бывают галогенными, тогда колба заполняется ксеноном с добавлением йода или летучих соединений брома, обеспечивающих обратный перенос испаряющегося вольфрама с колбы — обратно на тело накала. Такие лампы способны служить до 2000 часов.

Вольфрамовая нить установлена здесь внутри кварцевой трубки, разогреваемой с целью поддержания галогенного цикла. Данные лампы работают в термографии и ксерографии, также их можно встретить практически везде, где служат обычные лампы накаливания.

У электродосветных ламп источником оптического излучения выступает электрод, а точнее — раскаленная область катода при дуговом разряде в наполненной аргоном колбе лампы или на открытом воздухе.

Люминесцентные источники

В люминесцирующих источниках оптического излучения, потоком фотонов, электронов или других частиц, либо прямым действием электрического поля, возбуждаются газы или люминофоры, становящиеся в данных обстоятельствах источниками света. Спектр излучения и оптические параметры определяются свойствами люминофоров, а также энергией воздействия возбуждения, напряженностью электрического поля и т. д.

Один из наиболее распространенных видов люминесценции — фотолюминесценция, при которой спектр излучения первичного источника преобразуется в видимый. Ультрафиолетовое излучение разряда падает на слой люминофора, а люминофор в данных условиях излучает видимый свет и ближний ультрафиолет.

Компактная люминесцентная лампа

Энергосберегающие лампы — это как раз компактные люминесцентные лампы на базе данного эффекта. Подобная лампа мощностью 20 Вт дает световой поток равный световому потоку от лампы накаливания мощностью 100 Вт.

Экраны с электронно-лучевыми трубками относятся к катодолюминесцентным источникам оптического излучения. Экран покрытый люминофором возбуждается пучком летящих к нему электронов.

В светодиодах используется принцип инжекционной электролюминесценции на полупроводниках. Данные источники оптического излучения изготавливаются в виде дискретных изделий с оптическими элементами. Они применяются в индикации, сигнализации, освещении.

Оптическое излучение при радиолюминесценции возбуждается действием распадающихся изотопов.

Хемилюминесценция — превращение в свет энергии химических реакций (см. также виды люминесценции).

Стробоскоп

Вспышки света в сцинтилляторах, возбуждаемые быстрыми частицами, переходное излучение, а также излучение Вавилова-Черенкова, используют для выявления движущихся заряженных частиц.

Плазма

Плазменные источники оптического излучения отличаются линейчатым или сплошным спектром, а также энергетическими характеристиками, зависящими от температуры и давления плазмы, возникающей в электрическом разряде или при ином способе получения плазмы.

Параметры излучения варьируются в большом диапазоне в зависимости от подводимой мощности и состава вещества (см. также газоразрядные лампы, плазма). Параметры ограничиваются этой мощностью и стойкостью материалов. Импульсные источники плазмы обладают более высокими параметрами нежели непрерывные.