Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Технические и научные статьи / Провода и кабели / Электрическая емкость кабеля


 Школа для электрика в Telegram

Электрическая емкость кабеля



При включении или выключении постоянного напряжения в кабельной сети, или под действием переменного напряжения, всегда возникает емкостный ток. Длительно емкостный ток существует только в изоляции кабелей, находящихся под воздействием переменного напряжения. Ток проводимости при постоянном токе существует все время, а к изоляции кабеля оказывается приложено напряжение постоянного тока. Более подробно о емкости кабеля, о физическом смысле этой характеристики и будет рассказано в данной статье.

Силовой трехжильный кабель

С точки зрения физики, одножильный кабель круглого сечения является по сути цилиндрическим конденсатором. И если принять за Q величину заряда внутренней цилиндрической обкладки, то на единицу ее поверхности придется количество электричества, которое можно вычислить по формуле:

одножильный кабель круглого сечения

Здесь е — диэлектрическая проницаемость кабельной изоляции.

В соответствии с фундаментальной электростатикой, напряженность электрического поля Е при радиусе r окажется равной:

И если рассмотреть внутреннюю цилиндрическую поверхность кабеля на некотором удалении от его центра, а это будет эквипотенциальная поверхность, то напряженность электрического поля для единицы площади данной поверхности окажется равной:

Диэлектрическая проницаемость изоляции кабеля колеблется в широких пределах, в зависимости от условий эксплуатации и типа примененной изоляции. Так, вулканизированная резина имеет диэлектрическую проницаемость от 4 до 7,5, а пропитанная кабельная бумага — от 3 до 4,5. Дальше будет показано, как диэлектрическая проницаемость, а значит и емкость, связаны с температурой.

Обратимся к Кельвинову методу зеркального отражения. Опытные данные дают лишь формулы для приблизительного вычисления значений емкостей кабелей, и выводятся эти формулы на базе метода зеркального отражения. В основе метода положение о том, что цилиндрическая оболочка из металла, окружающая бесконечно длинный тонкий проводник L, заряженный до величины Q, влияет на этот проводник так же, как провод L1, заряженный противоположно, но с условием, что:

Прямые измерения емкостей дают различные результаты при разных методах измерения. По этой причине емкость кабеля можно условно разделить на:

  • Cст - емкость статическую, которая получается посредством измерения непрерывным током с последующим сравнением;

  • Сэфф - эффективную емкость, которую вычисляют на основе данных вольтметра и амперметра при тестировании переменным током по формуле: Сeff = Ieff/(?Ueff)

  • С - действительную емкость, которая получается из анализа осциллограммы по отношению максимального заряда к максимальному напряжению во время теста.

В действительности выяснилось, что величина С действительной емкости кабеля практически постоянна за исключением случаев пробоя изоляции, следовательно на диэлектрической проницаемости изоляции кабеля изменение напряжения не сказывается.

Однако влияние температуры на диэлектрическую проницаемость имеет место, и с ростом температуры она снижается до 5%, и соответственно снижается действительная емкость С кабеля. При этом отсутствует зависимость действительной емкости от частоты и формы тока.

электрическая емкость кабеля

Статическая емкость Сст кабеля при температурах ниже 40 °C согласуется со значением его действительной емкости С, и связано это с разжижением пропитки, при более высоких температурах статическая емкость Сст увеличивается. Характер роста отражен на графике, на нем кривая 3 показывает изменение статической емкости кабеля с изменением температуры.

Эффективная емкость Сэфф сильно зависима от формы тока. Чистый синусоидальный ток приводит к согласованию эффективной и действительной емкостей. Острая форма тока приводит к росту эффективной емкости в полтора раза, тупая форма тока — эффективную емкость уменьшает.

Практическое значение имеет эффективная емкость Сэфф, поскольку именно она определяет важные характеристики электрической сети. При ионизации в кабеле эффективная емкость увеличивается.

зависимость сопротивления кабельной изоляции от температуры

На приведенном графике:

1 — зависимость сопротивления кабельной изоляции от температуры;

2 — логарифм сопротивления кабельной изоляции от температуры;

3 — зависимость величины статической емкости Сст кабеля от температуры.

Во время производственного контроля качества изоляции кабеля, емкость практически не имеет решающего значения, разве что в процессе режима вакуумной пропитки в сушильном котле. Для низковольтных сетей емкость также не особо важна, но она влияет на коэффициент мощности при нагрузках индуктивного характера.

А при работе в высоковольтных сетях, емкость кабеля крайне важна, и может вызвать проблемы в процессе функционирования установки в целом. Например, можно сравнить установки с рабочим напряжением в 20000 вольт и 50000 вольт.

силовой электрический кабель

Допустим, необходимо передать 10 МВА при косинусе фи равном 0,9 на расстояние 15,5 км и 35,6 км. Для первого случая сечение жил с учетом допустимого нагрева выбираем 185 кв.мм, для второго — 70 кв.мм. Первая промышленная установка на 132 кВ в США с маслонаполненным кабелем имела следующие параметры: зарядный ток в 11,3 А/км дал зарядную мощность в 1490 кВа/км, что 25-кратно превысило аналогичные параметры воздушных ЛЭП аналогичного напряжения.

По емкости подземная установка в Чикаго первой очереди оказалась сродни параллельно включенному электрическому конденсатору на 14 МВА, а в городе Нью-Йорке мощность емкостного тока достигла 28 МВА, и это при передаваемой мощности в 98 МВА. Рабочая емкость кабеля оказалась приблизительно равной 0,27 Фарад на километр.

Потери холостого хода, когда нагрузка слаба, вызываются именно емкостном током, порождающим джоулево тепло, а полная нагрузка способствует более эффективной работе электростанций. В разгруженной сети такой реактивный ток понижает напряжение генераторов, по этой причине к их конструкциям предъявляют особые требования. С целью снижения емкостного тока повышают частоту тока высокого напряжения, например во время испытаний кабелей, но это реализовать трудно, и иногда прибегают к нагружению кабелей индуктивными реакторами.

Так, кабель всегда имеет емкость и активное сопротивление по отношению к земле, которые обуславливают емкостной ток. Сопротивление изоляции кабеля R при питающем напряжении 380 В должно быть не менее 0,4 МОм. Емкость кабеля С зависит от длины кабеля, способа его прокладки и т. д.

Для трехфазного кабеля с виниловой изоляцией, напряжением до 600 В и частотой сети 50 Гц зависимость емкостного тока от площади сечения токоведущих жил и его длины показана на рисунке. Для расчета емкостного тока необходимо использовать данные из технических условий изготовителя кабеля.

Если величина емкостного тока составляет 1 мА или меньше, это не влияет на работу электроприводов.

емкость кабеля

Важную роль играет емкость кабелей в заземляемых сетях. Токи заземления почти прямо пропорциональны емкостным токам и соответственно самой емкости кабеля. Поэтому в крупных мегаполисах токи заземления обширных городских сетей достигают огромных величин.

Надеемся, что этот краткий материал помог вам получить общее представление о емкости кабеля, о том, как она влияет на работу электрических сетей и установок, и почему необходимо уделять этому параметру кабеля должное внимание.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика