Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Про электричество для начинающих в доступном изложении. Как работает электричество. Здесь нет сухих и нудных лекций, а просто и понятно объясняются все ключевые термины, самые важные понятия, законы и явления.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Технические и научные статьи / Электричество для чайников / Чем отличаются между собой проводники, диэлектрики и полупроводники?


 Школа для электрика в Telegram

Чем отличаются между собой проводники, диэлектрики и полупроводники?



Все вещества состоят из атомов, молекул или ионов. Положительный ион получается из атома, лишившегося части электронов. Отрицательный ион, наоборот, получается за счет присоединения к атому дополнительных электронов. Ионами также могут быть и группы атомов, потерявшие или присоединившие электроны.

Атомы имеют положительно заряженное ядро и отрицательную электронную оболочку. В целом атомы и молекулы электрически нейтральны, поскольку несут одинаковые положительные и отрицательные заряды.

Проводники и изоляторы

Все вещества по своим электрическим свойствам делятся на проводники, полупроводники и диэлектрики. Это деление определяется структурой атома: чем легче оторвать от него электрон и тем самым получить свободные заряды, образующие электрический ток в веществе, тем больше его электропроводность.

Все металлы хорошие проводники, потому что в твердом состоянии представляют собой кристаллы, в узлах решетки которых расположены положительно заряженные ионы (атомы металла, лишившиеся электрона), а в промежутках между ними большое число свободных электронов, так называемый «электронный газ».

Именно наличие свободных электронов приводит к высокой электропроводности и теплопроводности металлов.

В диэлектриках, наоборот, свободные электроны практически отсутствуют, что обусловливает весьма низкую электропроводность (смотрите также - Почему диэлектрики не проводят электрический ток).

Силовой электрический кабель: медные жилы - проводник, изоляция - диэлектрик

Силовой электрический кабель: медные жилы - проводник, изоляция - диэлектрик

Полупроводники занимают промежуточное положение между проводниками и диэлектриками.

При нуле Кельвина (273оC) в полупроводнике свободные электроны отсутствуют. Однако если полупроводник нагреть, облучить, осветить и т. д., то часть электронов, получив избыток энергии, станут свободными, а атомы, лишившиеся электронов, положительными ионами.

Образуются так называемые пары электрон-дырка, способные образовать электрический ток при наличии внешнего электрического поля. При этом дырка ведет себя как эквивалентный положительный заряд, хотя в перемещении участвуют электроны, как бы по эстафете заполняющие дырку.

Наличие двух типов проводимостей (электронной и дырочной) приводит ко многим интересным свойствам полупроводников, обеспечивающим их широкое распространение в современной технике.

Полупроводниковый выпрямительный диод 1n4007

Полупроводниковый выпрямительный диод 1n4007

Электрические свойства вещества определяются не только особенностями строения атомов. Например, одни и те же атомы углерода могут образовывать диэлектрик (алмаз) и хороший проводник (графит). Эти вещества имеют различное строение кристаллической решетки.

Графит - проводник электрического тока

Графитовые щетки для электродвигателя постоянного тока

Примеси и дефекты кристаллической решетки тоже сильно изменяют электрические свойства твердых тел, так как влияют на способность атомов терять или приобретать электрон.

Дефекты кристаллической решетки (например, наличие вакансий - свободных от ионов узлов решетки) или примеси ионов других веществ в решетке могут сильно изменить электропроводность вещества благодаря повышенной подвижности ионов в такой решетке.

Электрический ток в веществе обусловлен перемещение зарядов (в металлах - свободных электронов). При перемещении заряды взаимодействуют (сталкиваются) с атомами вещества, отдавая им свою энергию, полученную от внешнего электрического поля. Этот процесс обмена энергией вызывает нагрев вещества и обусловливает электрическое сопротивление току.

В 1911 году голландский ученый Хейке Камерлинг-Оннес обнаружил, что при охлаждении до 4,2 K (268,80оC) сопротивление кольца из замороженной ртути внезапно, резким скачком упало до нуля - до значения, которое практически не может быть измерено.

Так было открыто явление сверхпроводимости, которое в 1930-х годах теоретически объяснил советский физик Л. Д. Ландау и лишь теперь начинает находить практическое использование (сверхпроводящие постоянные магниты, обмотки специальных электрических двигателей и мощных генераторов и т. д.).

В условиях сверхпроводимости образуются электронные пары, которые могут перемещаться в веществе, не взаимодействуя с ним.

Сверхпроводящий квадрупольный магнит, используемый для фокусировки частиц в БАК

Сверхпроводящий квадрупольный магнит, используемый для фокусировки частиц в БАК (Большом адронном коллайдере)

В настоящее время ведутся работы по созданию высокотемпературных сверхпроводников, которые позволили бы избежать необходимости применения дорогостоящих холодильных установок.

Предполагают, что «металлический водород», полученный из «обычного» твердого водорода воздействием на него чрезвычайно высокого давления, может явиться высокотемпературным сверхпроводником, способным работать при температурах до нескольких сот градусов Кельвина.

Большие надежды возлагаются также на полимерные сверхпроводники - органические соединения, в которых возможно существование электронных пар при «обычных» температурах.

Очень хорошим проводником является плазма - особое состояние вещества, когда под действием высокой температуры происходит сильная, практически полная его ионизация. Обилие электрических зарядов, как положительных, так и отрицательных, обусловливает высокую электропроводность плазмы.

Отличия между проводниками и диэлектриками:

Проводники в электрическом поле

Диэлектрики в электрическом поле

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика