Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
 
 


 

Справочник электрика / Электротехнические материалы

 

Характеристики электроизоляционных материалов


Характеристики электроизоляционных материалов Электроизоляционными материалами называют материалы, с помощью которых осуществляют изоляцию токопроводящих частей. Они обладают: высоким удельным сопротивлением, электрической прочностью - способностью материала противостоять разрушению его электрическим напряжением и электрическими потерями, характеризующимися тангенсом угла потерь, нагревостойкостыо, характеризующейся температурой, предельно допустимой для данного диэлектрика при его длительном использовании в электрооборудовании.

Электроизоляционные материалы - диэлектрики могут быть твердыми, жидкими и газообразными.

Назначение электроизоляционных материалов в электрических заключается в создании между частями, имеющими разные электрические потенциалы, такой среды, которая препятствовала бы прохождению тока между этими частями.

Различают электрические, механические, физико-химические и тепловые характеристики диэлектриков.

твердые электроизоляционные материалы

Электрические характеристики диэлектриков

Объемное сопротивление — сопротивление диэлектрика при прохождении через него постоянного тока. Для плоского диэлектрика оно равно:

Rv = ρv (d / S), Ом

где ρv - удельное объемное сопротивление диэлектрика, представляющее собой сопротивление куба с ребром 1 см при прохождении постоянного тока через две противоположные грани диэлектрика, Ом-см, S — площадь сечения диэлектрика, через которое проходит ток (площадь электродов), см2, d - толщина диэлектрика (расстояние между электродами), см.

Поверхностное сопротивление диэлектрика

Поверхностное сопротивление - сопротивление диэлектрика при прохождении тока по его поверхности. Это сопротивление составляет:

Rs = ρs (l / S), Ом

где ps - удельное поверхностное сопротивление диэлектрика, представляющее собой сопротивление квадрата (любых размеров) при прохождении постоянного тока от одной его стороны к противоположной, Ом, l- длина поверхности диэлектрика (в направлении прохождения тока), см, S — ширина поверхности диэлектрика (в направлении, перпендикулярном прохождению тока), см.

Диэлектрическая проницаемость.

Как известно, емкость конденсатора - диэлектрика, заключенного между двумя параллельно расположенными и находящимися друг против друга металлическими обкладками (электродами), составляет:

С = (ε S) / (4π l), см,

где ε - относительная диэлектрическая проницаемость материала, равная отношению емкости конденсатора с данным диэлектриком к емкости конденсатора таких же геометрических размеров, но диэлектриком которого является воздух (вернее вакуум); S - площадь электрода конденсатора, см2, l - толщина диэлектрика, заключенного между электродами, см.

диэлектрики

Угол диэлектрических потерь

Потеря мощности в диэлектрике при приложении к нему переменного тока составляет:

Pa = U х Ia, Вт

где U - приложенное напряжение, Ia - активная составляющая тока, проходящего через диэлектрик, А.

Как известно: Ia = Iр / tgφ = Iрх tgδ, А, Iр = U2πfC

где Iр - реактивная составляющая тока, проходящего через диэлектрик, А, С - емкость конденсатора, см, f - частота тока, гц, φ - угол, на который вектор тока, проходящий через диэлектрик, опережает вектор напряжения, приложенного к этому диэлектрику, град, δ - угол, дополняющий φ до 90° (угол диэлектрических потерь, град).

Таким образом, величина потери мощности определяется:

Pa = U22πfCtgδ, Вт

Большое практическое значение имеет вопрос зависимости tgδ от величины приложенного напряжения (кривая ионизации).

При однородной изоляции, не имеющей расслоений и растрескиваний, tgδ почти не зависит от величины приложенного напряжения; при наличии расслоений и растрескиваний с увеличением приложенного напряжения tgδ резко возрастает из-за ионизации промежутков, заключенных внутри изоляции.

Периодическое измерение угла диэлектрических потерь (tgδ) и его сравнивание с результатами предыдущих замеров характеризуют состояние изоляции, степень и интенсивность ее старения.

Электрическая прочность диэлектрика

В электроустановках диэлектрики, образующие изоляцию обмоток, должны противостоять действию электрического поля. Интенсивность (напряженность) тюля возрастает с увеличением напряжения, создающего это поле, и, когда напряженность поля достигает критической величины, диэлектрик теряет свои электроизоляционные свойства происходит так называемый пробой диэлектрика.

Напряжение, при котором происходит пробой, называется пробивным напряжением, а соответствующая ему напряженность поля - электрической прочностью диэлектрика.

Численное значение электрической прочности равно отношению величины пробивного напряжения к толщине диэлектрика в месте пробоя:

Eпр = Uпр / l, кВ / мм,

где Uпр - пробивное напряжение, кВ, l - толщина изоляции в месте пробоя, мм.

электроизоляционные материалы
Электроизоляционные материалы

Физико-химические характеристики диэлектриков

Помимо электрических, различают следующие физико-химические характеристики диэлектриков.

Кислотное число — определяет количество (мг) гидроксида калия (КОН), необходимое для нейтрализации свободных кислот, содержащихся в жидком диэлектрике и ухудшающих его электроизоляционные свойства.

Вязкость - определяет степень текучести жидкого диэлектрика, от которой зависит проникающая способность лаков при пропитке обмоточных проводов, а также конвекция масла в трансформаторах и т. д.

Различаются кинематическая вязкость, измеряемая капиллярными вискозиметрами (U-образными стеклянными трубками), и так называемая условная вязкость, определяемая по скорости истечения жидкости из калиброванного отверстия в специальной воронке. Единицей кинематической вязкости является стокс (ст).

Условная вязкость измеряется градусами Энглера.

Изолента

Нагревостойкость — способность материала выполнять свои функции при воздействии рабочей температуры в течение времени, сравнимого с расчетным сроком нормальной эксплуатации электрооборудования.

Под влиянием нагрева происходит тепловое старение электроизоляционных материалов, в результате которого изоляция перестает удовлетворять предъявляемым к ней требованиям.

Классы нагревостойкости электроизоляционных материалов (ГОСТ 8865-70). Буква обозначает класс нагревостойкости, а цифры в скобках - температуру, °С

Y (90) Волокнистые материалы из целлюлозы, хлопка и натурального шелка, не пропитанные и не погруженные в жидкий электроизоляционный материал
А(105) Волокнистые материалы из целлюлозы, хлопка или натурального, искусственного и синтетического шелка, пропитанные или погруженные в жидкий электроизоляционный материал
Е (120) Синтетические материалы (пленки, волокна, смолы, компаунды)
В (130) Материалы на основе слюды, асбеста и стекловолокна, применяемые с органическими связующими и пропитывающими составами
F (155) Материалы на основе слюды, асбеста и стекловолокна в сочетании с синтетическими связующими и пропитывающими составами
Н (180) Материалы на основе слюды, асбеста и стекловолокна в сочетании с кремнийорганическими связующими и пропитывающими составами
С (свыше 180) Слюда, керамические материалы, стекло, кварц или их комбинации без связующих составов или с неорганическими связующими

Температура размягчения, при которой начинается размягчение твердых диэлектриков, имеющих в холодном состоянии аморфное состояние (смол, битумов). Температура размягчения определяется при выдавливании разогретой изоляции из кольца или трубки с помощью стального шарика или ртути.

Характеристики электроизоляционных материалов

Температура каплепадения, при которой из чашки (имеющей на дне отверстие диаметром 3 мм), в которой разогревается испытуемый материал, отделяется и падает первая капля.

Температура вспышки паров, при которой смесь паров электроизоляционной жидкости и воздуха воспламеняется от преподнесенного пламени горелки. Чем ниже температура воспламенения жидкости, тем больше ее испаряемость.

Влагостойкость, химстойкость, морозостойкость и тропикостойкость диэлектриков - стабильность электрических и физико-химических характеристик электроизоляционных материалов при воздействии соответственно влаги, кислот или щелочей низкой температуры в пределах от -45° до -60° С, а также тропического климата, характеризуемого высокой и резко изменяющейся в течение суток температурой воздуха, его высокой влажностью и загрязненностью, наличием плесневых грибков, насекомых и грызунов.

Дугостойкость и короностойкость диэлектриков - стойкость электроизоляционных материалов к воздействию озона и азота, выделяющихся при тихом разряде - короне, а также стойкость к действию электрических искр и устойчивой дуги.

Термопластичные и термореактивные свойства диэлектриков

Термопластичными электроизоляционными материалами являются такие, которые, будучи твердыми в исходном, холодном состоянии, размягчаются при нагреве и растворяются в соответствующих растворителях. После охлаждения эти материалы вновь отвердевают. При повторном нагреве сохраняется их способность к размягчению и растворению в растворителях. Таким образом, нагрев таких материалов не вызывает каких-либо изменений в их молекулярной структуре.

В противоположность этому так называемые термореактивиые материалы после тепловой обработки при соответствующем режиме отвердевают (запекаются). При повторном нагреве не размягчаются и не растворяются в растворителях, что свидетельствует о прошедших при нагреве необратимых изменениях в их молекулярном строении.

Механическими характеристиками изоляционных материалов являются: пределы прочности при растяжении, сжатии, статическом и динамическом изгибе, а также твердость.