Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике   Искать в Школе для электрика:
 
 

 

Статьи для электриков / Провода и кабели

 

Оптоволоконные кабели - устройство, виды и характеристики




В оптоволоконных кабелях, в отличие от кабелей с медными или алюминиевыми жилами, в качестве среды для передачи сигнала используется прозрачный волоконный световод. Сигнал здесь передается не с помощью электрического тока, а с помощью света. Это значит, что движутся практически не электроны, а фотоны, соответственно и потери при передаче сигнала оказываются пренебрежимо малы.

Данные кабели идеальны в качестве средства передачи информации, ведь свет способен проходить по прозрачному стекловолокну практически беспрепятственно на десятки километров, при этом интенсивность света уменьшается незначительно.

Оптоволоконный кабель

Бывают GOF-кабели (англ. glass optic fiber cable) — со стеклянным волокном, а также POF-кабели (англ. plastic optic fiber cable) — с прозрачным пластиковым волокном. И те и другие традиционно называются оптоволоконными или волоконно-оптическими кабелями.

Устройство оптоволоконного кабеля

Оптоволоконный кабель имеет достаточно простое устройство. В центре кабеля расположен световод из стекловолокна (его диаметр не превышает 10 мкм) облаченный в защитную пластиковую или стеклянную оболочку, обеспечивающую полное внутреннее отражение света за счет разности коэффициентов преломления на границе двух сред.

Получается что свет, на всем своем пути от передатчика к приемнику, не может выйти из центральной жилы. К тому же свету не страшны электромагнитные помехи, поэтому такой кабель не нуждается в электромагнитном экранировании, а нуждается лишь в упрочнении.

Для придания оптоволоконному кабелю механической прочности, применяют особые меры — делают кабель бронированным, тем более когда речь заходит о многожильных оптических кабелях, несущих сразу несколько отдельных световодов. Кабели для подвесного монтажа требуют особого упрочнения металлом и кевларом.

Самая простая конструкция оптоволоконного кабеля — стеклянное волокно в пластиковой оболочке. Более сложная конструкция — многослойный кабель с упрочняющими элементами, например для прокладки под водой, под землей или для подвесного монтажа.

Устройство оптико-волоконного кабеля

В многослойном броневом кабеле несущий упрочняющий трос изготовлен из заключенного в полиэтиленовую оболочку металла. Вокруг него располагаются светонесущие пластиковые или стеклянные волокна. Каждое отдельное волокно покрыто слоем цветного лака в качестве цветовой маркировки и для защиты от механических повреждений. Пучки волокон облачены в пластиковые трубки, заполненные гидрофобным гелем.

В одной пластиковой трубке может находиться от 4 до 12 таких волокон, в то время как общее количество волокон в одном таком кабеле может доходить до 288 штук. Трубки оплетены нитью, стягивающей пленку, смоченную гидрофобным гелем — для большего демпфирования механических воздействий. Трубки и центральный кабель заключены в полиэтилен. Далее идут кевларовые нити, практически и обеспечивающие многожильному кабелю броню. Потом снова полиэтилен для защиты от влаги, и наконец внешняя оболочка.

Волоконно-оптический кабель

Два основных типа оптоволоконных кабелей

Оптоволоконные кабели есть двух типов: многомодовый и одномодовый. Многомодовый стоит дешевле, одномодовый — дороже.

Одномодовый кабель

Одномодовый кабель обеспечивает лучам, проходящим по световоду, практически один и тот же путь без существенных взаимных отклонений, в итоге на приемник все лучи приходят одновременно и без искажений формы сигнала. Диаметр световода в одномодовом кабеле составляет около 1,3 мкм, и свет именно с такой длиной волны следует по нему передавать.

По этой причине в качестве передатчика используется источник лазерного излучения с монохроматическим светом строго требуемой длины волны. Именно кабели данного типа (одномодовые) рассматриваются сегодня как наиболее перспективные для коммуникаций на значительные расстояния в будущем, но пока они дороги и недолговечны.

Многомодовый кабель

Многомодовый кабель менее «точен», чем одномодовый. Лучи от передатчика идут в нем с разбросом, и на стороне приемника имеется некоторое искажение формы передаваемого сигнала. Диаметр световодного волокна в многомодовом кабеле составляет 62,5 мкм, а диаметр внешней оболочки 125 мкм.

Здесь используется обычный (а не лазерный) светодиод на стороне передатчика (с длиной волны 0,85 мкм), и оборудование получается не таким дорогим как с лазерным источником света, да и срок службы у нынешних многомодовых кабелей дольше. Кабели данного типа не превышают по длине 5 км. Типовое время задержки сигнала при передаче составляет порядка 5 нс/м.

Кабель для ВОЛС

Достоинства оптоволоконных кабелей

Так или иначе, оптоволоконный кабель принципиально отличается от обычных электрических кабелей исключительной помехозащищенностью, что обеспечивает максимальную сохранность как целостности, так и конфиденциальности передаваемой по нему информации.

Электромагнитная помеха, направленная на оптоволоконный кабель, не способна исказить световой поток, да и сами фотоны не порождают внешнего электромагнитного излучения. Без нарушения целостности кабеля невозможно перехватить передаваемую по нему информацию.

Полоса пропускания оптоволоконного кабеля теоретически составляет 10^12 Гц, что не идет ни в какое сравнение с токонесущими кабелями любой сложности. Можно легко передавать информацию со скоростью до 10 Гбит/с на километры.

Сам по себе оптоволоконный кабель стоит не дорого, почти так же, как тонкий коаксиальный кабель. Но основная доля удорожания готовой сети все же приходится на передающее и приемное оборудование, задача которого - преобразовать электрический сигнал в свет и обратно.

Затухание светового сигнала при прохождении через оптоволоконный кабель локальной сети не превышает 5 дБ на 1 километр, то есть почти такое же как у электрического сигнала низкой частоты. При том чем выше частота — тем выраженнее оказывается преимущество оптической среды перед традиционными электрическими проводниками — затухание растет незначительно. А на частотах выше 0,2 ГГц оптоволоконный кабель однозначно оказывается вне конкуренции. Практически возможно довести расстояние передачи до 800 км.

Оптико-волоконная связь

Оптоволоконные кабели применимы в сетях с топологиями «кольцо» или «звезда», при этом полностью отсутствуют проблемы заземления и согласования с нагрузкой, вечно актуальные для электрических кабелей.

Идеальная гальваническая развязка, наряду с вышеперечисленными достоинствами, позволяет аналитикам прогнозировать, что в сетевых коммуникациях оптоволоконные кабеля вскоре полностью вытеснят электрические, тем более с учетом растущего дефицита меди на планете.

Недостатки оптоволоконных кабелей

Справедливости ради, нельзя не упомянуть и о недостатках волоконно-оптических систем передачи информации, главный из которых — сложность монтажа систем и высокие требования к точности установки разъемов. Микронное отклонения при монтаже разъема способно привести к увеличению затухания в нем. Здесь необходима высокоточная сварка или специальный клеевой гель, коэффициент преломления света в котором аналогичен оному в самом монтируемом стекловолокне.

По этой причине квалификация персонала не допускает снисхождения, необходимы специальные инструменты и высокое мастерство владения ими. Чаще всего прибегают к использованию готовых кусков кабеля, на концах которых уже установлены готовые разъемы требуемого типа. Для разветвления сигнала от оптоволокна, применяют специализированные разветвители на несколько каналов (от 2 до 8), но при разветвлении неизбежно происходит ослабление света.

Конечно, оптоволокно является менее прочным и менее гибким материалом нежели та же медь, и изгибать оптоволокно на радиус менее чем 10 см небезопасно для его сохранности. Ионизирующие излучения снижают прозрачность оптоволокна, усиливают затухание передаваемого светового сигнала.

Оптоволоконные кабели стойкие к радиации стоят дороже обычных оптоволоконных кабелей. Резкий перепад температуры может привести к образованию трещины в световоде. Безусловно, оптоволокно уязвимо и к механическим воздействиям, к ударам, к ультразвуку; для защиты от этих факторов применяются специальные мягкие звукопоглощающие материалы оболочек кабелей.