Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Технические и научные статьи / Пусконаладочные работы / Испытание изоляции повышенным напряжением


 Школа для электрика в Telegram

Испытание изоляции повышенным напряжением



Испытание изоляции повышенным напряжениемЭлектрическая прочность изоляции определяется ее способностью длительно выдерживать рабочее напряжение. Уменьшение электрической прочности вызывается в большинстве случаев увлажнением и местными дефектами изоляции. Обычно такими дефектами являются газовые (воздушные) включения в твердом или жидком диэлектрике.

За счет того, что электрическая прочность газа во включении ниже, чем у основной изоляции, создаются условия для возникновения пробоя или перекрытия изоляции в месте дефекта — частичного разряда. В свою очередь, частичные разряды вызывают дальнейшее разрушение изоляции. Частичным разрядом называют как скользящий (поверхностный) разряд, так и пробой отдельных зон или элементов изоляции.

Для определения запаса электрической прочности изоляции производится испытание ее повышенным напряжением. Испытательное напряжение, значительно превышающее рабочее, прикладывается в течение времени, достаточного для развития разряда в местном дефекте вплоть до пробоя. Таким образом, приложение повышенного напряжения позволяет не только выявить дефекты, но и гарантировать необходимый уровень электрической прочности изоляции в период ее эксплуатации.

Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами, описанными ранее. Изоляция может быть подвергнута испытанию повышенным напряжением только при положительных результатах предшествующих проверок.

Изоляция считается выдержавшей испытание повышенным напряжением в том случае, если не было пробоев, частичных разрядов, выделений газа или дыма, резкого снижения напряжения и возрастания тока через изоляцию, местного нагрева изоляции.

В зависимости от вида оборудования и характера испытания изоляция может быть испытана приложением повышенного напряжения переменного тока или выпрямленного напряжения. В тех случаях, когда испытание изоляции производится как переменным, так и выпрямленным напряжением, испытание выпрямленным напряжением должно предшествовать испытанию переменным напряжением.

Испытание изоляции повышенным напряжением переменного тока

Испытание изоляции повышенным напряжениемИспытание повышенным напряжением переменного тока промышленной частоты производится посредством повышающего трансформатора с регулировочным устройством на стороне низшего напряжения. Схема установки должна содержать также выключатель питания с видимым разрывом и максимальную токовую защиту для отключения питания трансформатора при пробое или перекрытии изоляции объекта, например рубильник и предохранитель или автоматический выключатель со снятой крышкой. Уставка срабатывания защиты должна превышать ток, потребляемый из сети при максимальном значении испытательного напряжения на объекте, не более чем в два раза.

В качестве испытательного напряжения используется обычно напряжение промышленной частоты. Время приложения испытательного напряжения принято равным 1 мин для главной изоляции и 5 мин для межвитковой. Такая продолжительность приложения испытательного напряжения не сказывается на состоянии изоляции, не имеющей дефектов, и достаточна для осмотра находящейся под напряжением изоляции.

Скорость повышения напряжения до одной трети испытательного значения может быть произвольной, в дальнейшем испытательное напряжение следует повышать плавно, со скоростью, допускающей визуальный отсчет на измерительных приборах. При испытании изоляции электрических машин время повышения напряжения от половинного до полного значения должно быть не менее 10 с.

После установленной продолжительности испытания напряжение плавно снижается до значения, не превышающего одной трети испытательного, и отключается. Резкое снятие напряжения допускается в тех случаях, когда это необходимо для безопасности людей или сохранности оборудования. Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения.

Для предотвращения недопустимых перенапряжений при испытаниях (из-за высших гармоник в кривой испытательного напряжения) испытательная установка должна быть по возможности включена на линейное напряжение сети. Форму кривой напряжения можно контролировать электронным осциллографом.

Испытание изоляции повышенным напряжениемИспытательное напряжение, за исключением ответственных испытаний (генераторов, крупных двигателей и т. д.), измеряют на стороне низкого напряжения. При испытании объектов с большой емкостью напряжение на высокой стороне испытательного трансформатора может несколько превышать расчетное по коэффициенту трансформации за счет емкостного тока.

При ответственных испытаниях испытательное напряжение измеряют на высокой стороне испытательного трансформатора с помощью трансформаторов напряжения или электростатических киловольтметров.

В тех случаях, когда одного трансформатора напряжения для измерения испытательного напряжения недостаточно, допускается последовательное соединение двух однотипных трансформаторов напряжения. Применяют также дополнительные сопротивления к вольтметрам.

Для защиты ответственных объектов от случайного опасного повышения напряжения параллельно испытываемому объекту должны быть включены через сопротивление (2 - 5 Ом на каждый вольт испытательного напряжения) шаровые разрядники с пробивным напряжением, равным 110 % испытательного.

Схема испытания изоляции электрооборудования повышенным напряжением переменного тока приведена на рис. 1.


Рис. 1. Схема испытания изоляции повышенным напряжением переменного тока.

Перед подачей напряжения на испытываемый объект полностью собранную схему опробуют вхолостую и проверяют напряжение пробоя шаровых разрядников.

В качестве испытательных трансформаторов, кроме специальных, можно использовать силовые трансформаторы и трансформаторы напряжения.

Силовые трансформаторы при таком использовании допускают нагрузку по току до 250 % номинальной при трехкратном (пофазном) испытании с двухминутным перерывом между приложениями напряжения. Для трансформаторов напряжения типа НОМ допустимо повышение напряжения на первичной обмотке до 150 - 170 % номинального. При отсутствии испытательного трансформатора достаточной мощности возможно параллельное включение однотипных трансформаторов.

Широко применяются измерительные трансформаторы напряжения типа НОМ. Их максимальная мощность, указываемая в паспортных данных и обусловленная обеспечением соответствующего класса точности, сравнительно невелика. Однако по условиям нагрева они допускают кратковременную перегрузку от 3- до 5-кратной по отношению к значению тока, вычисленному по максимальной паспортной мощности. Кроме того, эти трансформаторы могут быть перевозбуждены по напряжению на 30—50 %, можно включить два трансформатора последовательно.

Схемы последовательного включения испытательных трансформаторов

Рис. 2. Схемы последовательного включения испытательных трансформаторов: ТL1 и TL2 — испытательные трансформаторы; TL3 — изолирующий трансформатор.

Включение двух трансформаторов по схеме рис. 2а применимо в случае, когда оба электрода объекта могут быть изолированы от земли. Испытательное напряжение равно сумме напряжений обоих трансформаторов; номинальные значения этих напряжений могут быть различными. При каскадном соединении трансформаторов (рис. 2а, б) один из них TL2 находится под высоким потенциалом и корпус его должен быть изолирован от земли.

Возбуждение этого трансформатора может производиться с помощью специальной обмотки первого трансформатора TL1 каскада (рис. 2б) или непосредственно от его вторичной обмотки, если максимальное значение напряжения на ней не превысит допустимого для первичной обмотки трансформатора TL2. Если надежно изолировать трансформатор TL2 не представляется возможным, используют вспомогательный изолирующий трансформатор TL3 (рис. 2в).

Силовые трансформаторы применяются с получением фазного или линейного напряжения. В первом случае нейтраль обмотки ВН заземляется, а первичное напряжение подается на нуль и соответствующий фазный вывод обмотки НН.

Мощность трансформатора принимается при этом равной 1/3 номинальной. Линейное напряжение используется при условии, что изоляция нейтрали рассчитана на полное фазное напряжение. В этом случае один или два соединенных между собой вывода ВН заземляются. мощность трансформатора принимается равной 2/3 номинальной. Силовые трансформаторы допускают кратковременную перегрузку по току в 2,5—3 раза.

Регулировочное устройство должно обеспечивать изменение напряжения трансформатора от 25—30 % до полного значения испытательного напряжения. Регулирование должно быть практически плавным, со ступенями, не превышающими 1—1,5 % от испытательного напряжения. Разрывы цепи при регулировании недопустимы.

Напряжение должно быть близко к синусоидальному с содержанием высших гармонических не более 5 %. При использовании регуляторов с малым внутренним сопротивлением, например автотрансформаторов, это требование практически выполняется. Применение дросселей или реостатов для этой цели не рекомендуется.

Испытание изоляции выпрямленным напряжением

Применение выпрямленного испытательного напряжения позволяет значительно уменьшить мощность испытательной установки, делает возможным испытание объектов с большой емкостью (кабелей конденсаторов и др.), позволяет контролировать состояние изоляции по измеряемым токам утечки.

При испытании изоляции выпрямленным напряжением, как правило, применяются схемы однополупериодного выпрямления. На рис. 3 приведена принципиальная схема испытания изоляции выпрямленным напряжением.

Рис. 3. Схема испытания изоляции выпрямленным напряжением

Методика испытания изоляции выпрямленным напряжением аналогична методике при испытаниях переменным напряжением. Дополнительно ведется контроль за током утечки.

Время приложения выпрямленного напряжения более продолжительно, чем при испытании переменным напряжением, и в зависимости от испытываемого оборудования установлено нормами в пределах 10 - 15 мин.

Измерение испытательного напряжения, как правило, осуществляется с помощью вольтметра, включенного на стороне низкого напряжения испытательного трансформатора (с пересчетом по коэффициенту трансформации).

Испытание изоляции повышенным напряжениемПоскольку выпрямленное напряжение определяется амплитудным значением, показания вольтметра (измеряющего эффективные значения напряжения) необходимо умножить на внутреннее сопротивление, выпрямительной лампы, небольшое при нормальном накале катода резко возрастает при недостаточном токе накала. При этом падение напряжения в выпрямительной лампе увеличивается, а на испытываемом объекте уменьшается. Поэтому при испытаниях необходимо следить за напряжением питания испытательной установки. Целесообразно также применение вольтметра с большим добавочным сопротивлением для измерения напряжений на высокой стороне.

Как и при испытаниях переменным напряжением, в целях защиты ответственных объектов от случайного чрезмерного повышения напряжения рекомендуется параллельно испытываемому объекту включить через сопротивление (2 - 5 Ом на каждый вольт испытательного напряжения) разрядник с пробивным напряжением, равным 110 - 120 % испытательного.

Ток, проходящий через изоляцию при испытаниях выпрямленным напряжением, в большинстве случаев не превышает 5 - 10 мА, что обусловливает небольшую мощность испытательного трансформатора.

При испытаниях объектов с большой емкостью (силовые кабели, конденсаторы, обмотки крупных электрических машин) заряженная до испытательного напряжения емкость объекта имеет большой запас энергии, мгновенный разряд которой может привести к разрушению аппаратуры испытательной установки. Поэтому разряжать испытываемый объект следует так, чтобы разрядный ток не проходил через измерительный прибор.

Для снятия заряда с испытываемых объектов используются заземляющие штанги, в электрическую цепь которых включается сопротивление 5 - 50 кОм. В качестве разрядных сопротивлений для объектов, обладающих большой емкостью, применяют наполненные водой резиновые трубки.

Заряд емкости даже после кратковременного наложения заземления может сохраняться длительно и представлять опасность для жизни персонала. Поэтому после того как испытываемый объект разряжен с помощью разрядного устройства, он должен быть наглухо заземлен.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика