Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике   ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику и электронику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, технологии автоматизации и многое другое.
Чтобы не тратить каждый раз свое время на поиски добавляйте наш сайт в закладки и подписывайтесь на наши странички в соцсетях!
 


Про электричество для начинающих в доступном изложении. Как работает электричество. Здесь нет сухих и нудных лекций, а просто и понятно объясняются все ключевые термины, самые важные понятия, законы и явления.

 

База знаний / Электричество для чайников

 

Принцип работы трансформатора



Для преобразования электрического напряжения одной величины в электрическое напряжение другой величины, то есть для преобразования электрической мощности, применяют электрические трансформаторы.

Трансформатор может преобразовывать лишь переменный ток в переменный ток, поэтому для получения постоянного тока, переменный ток с трансформатора при необходимости выпрямляют. Для этой цели служат выпрямители.

Так или иначе, любой трансформатор (будь то трансформатор напряжения, трансформатор тока или импульсный трансформатор) работает благодаря явлению электромагнитной индукции, которое проявляет себя во всей красе именно при переменном или импульсном токе.

Однофазный трансформатор

Устройство трансформатора

В простейшем виде однофазный трансформатор состоит всего из трех основных частей: ферромагнитного сердечника (магнитопровода), а также первичной и вторичной обмоток. В принципе обмоток у трансформатора может быть и больше двух, но минимум их две. В некоторых случаях функцию вторичной обмотки может нести на себе часть витков первичной обмотки (см. виды трансформаторов), но подобные решения встречаются достаточно редко по сравнению с обычными.

Устройство трансформатора

Главная часть трансформатора — ферромагнитный сердечник. Когда трансформатор работает, то именно внутри ферромагнитного сердечника присутствует изменяющееся магнитное поле. Источником изменяющегося магнитного поля в трансформаторе служит переменный ток первичной обмотки.

Напряжение на вторичной обмотке трансформатора

Известно, что любой электрический ток сопровождается магнитным полем, соответственно переменный ток сопровождается переменным (изменяющимся по величине и направлению) магнитным полем.

Таким образом, подав в первичную обмотку трансформатора переменный ток, получим изменяющееся магнитное поле тока первичной обмотки. А чтобы магнитное поле было сконцентрировано главным образом внутри сердечника трансформатора, данный сердечник изготавливают из материала с высокой магнитной проницаемостью, в тысячи раз большей чем у воздуха, чтобы основная часть магнитного потока первичной обмотки замкнулась бы именно внутри сердечника, а не по воздуху.

Таким образом переменное магнитное поле первичной обмотки сконцентрировано в объеме сердечника трансформатора, который изготавливают из трансформаторной стали, феррита или другого подходящего материала, в зависимости от рабочей частоты и назначения конкретного трансформатора.

Принцип работы трансформатора

Вторичная обмотка трансформатора находится на общем сердечнике с его первичной обмоткой. Поэтому переменное магнитное поле первичной обмотки пронизывает также и витки вторичной обмотки.

А явление электромагнитной индукции как раз и заключается в том, что изменяющееся во времени магнитное поле наводит в пространстве вокруг себя изменяющееся электрическое поле. И поскольку в данном пространстве вокруг изменяющегося магнитного поля находится провод вторичной обмотки, то индуцированное переменное электрическое поле действует на носители заряда внутри этого провода.

Данное действие электрическим полем вызывает в каждом витке вторичной обмотки ЭДС. В результате между выводами вторичной обмотки появляется переменное электрическое напряжение. Когда вторичная обмотка включенного в сеть трансформатора не нагружена, трансформатор работает в режиме холостого хода.

Работа трансформатора под нагрузкой

Работа трансформатора под нагрузкой

Если же ко вторичной обмотке работающего трансформатора подключена некая нагрузка, то во всей вторичной цепи трансформатора возникает ток через нагрузку.

Данный ток порождает свое собственное магнитное поле, которое, по закону Ленца, имеет такое направление, что противодействует «причине, его вызывающей». То есть магнитное поле тока вторичной обмотки в каждый момент времени стремится уменьшить увеличивающееся магнитное поле первичной обмотки или же стремится поддержать магнитное поле первичной обмотки когда оно уменьшается, оно всегда направлено навстречу магнитному полю первичной обмотки.

Таким образом, когда вторичная обмотка трансформатора нагружена, в его первичной обмотке возникает противо-ЭДС, заставляющая первичную обмотку трансформатора потреблять из питающей сети больше тока.

Силовой трансформатор в разрезе

Коэффициент трансформации

Соотношение витков первичной N1 и вторичной N2 обмоток трансформатора определяет соотношение между его входным U1 и выходным U2 напряжениями и входным I1 и выходным I2 токами, при работе трансформатора под нагрузкой. Данное соотношение называется коэффициентом трансформации трансформатора:

Коэффициент трансформации

Коэффициент трансформации больше единицы если трансформатор понижающий, и меньше единицы — если трансформатор повышающий.

Трансформатор напряжения

Трансформатор напряжения

Трансформатор напряжения является разновидностью понижающего трансформатора, предназначенной для гальванической развязки цепей высокого напряжения от цепей низкого напряжения.

Обычно, когда речь идет о высоком напряжении, имеют ввиду 6 и более киловольт (на первичной обмотке трансформатора напряжения), а под низким напряжением понимают величины порядка 100 вольт (на вторичной обмотке).

Такой трансформатор применяется, как правило, для измерительных целей. Он понижает, например, высокое напряжение линии электропередач до удобного для измерения низковольтного напряжения, при этом может также гальванически изолировать цепи измерения, защиты, управления, - от высоковольтной цепи. Трансформатор данного типа обычно работает в режиме холостого хода.

Силовой трансформатор на опоре ЛЭП

Трансформатором напряжения можно назвать в принципе и любой силовой трансформатор, применяемый для преобразования электрической мощности.

Трансформатор тока

Трансформатор тока

У трансформатора тока первичная обмотка, состоящая обычно всего из одного витка, включается последовательно в цепь источника тока. Данным витком может выступать участок провода цепи, в которой необходимо измерить ток.

Провод просто продевается через окно сердечника трансформатора и становится этим самым единственным витком — витком первичной обмотки. Вторичная же его обмотка, имеющая много витков, подключается к измерительному прибору, отличающемуся малым внутренним сопротивлением.

Трансформаторы данного типа используются для измерения величин переменного тока в силовых цепях. Здесь ток и напряжение вторичной обмотки оказываются пропорциональны измеряемому току первичной обмотки (токовой цепи).

Трансформаторы тока широко применяются в устройствах релейной защиты электроэнергетических систем, поэтому обладают высокой точностью. Они делают измерения безопасными, так как гальванически надежно изолируют измерительную цепь от первичной цепи (обычно высоковольтной — десятки и сотни киловольт).

Импульсный трансформатор

Импульсный трансформатор

Данный трансформатор предназначен для преобразования тока (напряжения) импульсной формы. Короткие импульсы, обычно прямоугольные, подаваемые на его первичную обмотку, заставляют трансформатор работать практически в режиме переходных процессов.

Такие трансформаторы используются в импульсных преобразователях напряжения и других импульсных устройствах, а также в качестве дифференцирующих трансформаторов.

Применение импульсных трансформаторов позволяет снизить вес и стоимость устройств, в которых они применяются просто в силу повышенной частоты преобразования (десятки и сотни килогерц) по сравнению с сетевыми трансформаторами, работающих на частоте 50-60 Гц. Прямоугольные импульсы, у которых длительность фронта много меньше длительности самого импульса, нормально трансформируются с малыми искажениями.