Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Изучайте основы электротехники на нашем сайте и освоите методы расчетов, различные типы систем и применение электротехнических устройств. Раздел "Основы электротехники" поможет вам укрепить ваши знания и развить навыки в этой захватывающей области.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Основы электротехники / Закон Кулона и его применение в электротехнике


 Школа для электрика в Telegram

Закон Кулона и его применение в электротехнике



Закон Кулона - это один из основных законов электростатики, который описывает силу взаимодействия между двумя неподвижными точечными электрическими зарядами в вакууме.

Сила прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Сила притяжения или отталкивания направлена вдоль прямой, соединяющей заряды.

Закон Кулона был экспериментально установлен французским физиком Шарлем Кулоном в 1785 году.

Так же как в ньютоновой механике гравитационное взаимодействие всегда имеет место между телами обладающими массами, аналогичным образом в электродинамике электрическое взаимодействие свойственно телам, обладающим электрическими зарядами. Обозначается электрический заряд символом «q» или «Q».

Можно даже сказать, что понятие электрического заряда q в электродинамике чем-то схоже с понятием гравитационной массы m в механике. Но в отличие от гравитационной массы, электрический заряд характеризует свойство тел и частиц вступать в силовые электромагнитные взаимодействия, и эти взаимодействия, как вы понимаете, не являются гравитационными.

Электрические заряды

Закон Кулона

Человеческий опыт исследования электрических явлений содержит множество экспериментальных результатов, и все эти факты позволили физикам прийти к следующим однозначным выводам относительно электрических зарядов:

1. Электрические заряды бывают двух родов — условно их можно разделить на положительные и отрицательные.

2. От одного заряженного предмета к другому электрические заряды можно передавать: допустим, путем соприкосновения тел друг с другом - заряд между ними можно разделить. При этом электрический заряд вовсе не является обязательной составной частью тела: в различных условиях один и тот же предмет может обладать разным по величине и по знаку зарядом, либо заряд может отсутствовать. Таким образом, заряд не является чем-то неотъемлемым для носителя, и в то же самое время заряд не может существовать без носителя заряда.

3. В то время как гравитирующие тела всегда притягиваются друг к другу, электрические заряды могут как взаимно притягиваться, так и взаимно отталкиваться. Разноименные заряды взаимно притягиваются, одноименные — друг от друга отталкиваются.

Носителями зарядов являются электроны, протоны и другие элементарные частицы. Различают два рода электрических зарядов — положительные и отрицательные. Положительными называются заряды, возникающие на стекле, натертом кожей. Отрицательными — заряды, возникающие на янтаре, натертом мехом. Тела, заряженные одноименными зарядами, отталкиваются. Тела, имеющие разноименные заряды, притягиваются друг к другу.

Закон сохранения электрического заряда — фундаментальный закон природы, он звучит так: «алгебраическая сумма зарядов всех тел внутри изолированной системы остается постоянной». Это значит, что внутри замкнутой системы невозможно появление или исчезновение зарядов лишь одного знака.

Алгебраическая сумма зарядов в изолированной системе сохраняется постоянной. Носители зарядов могут перемещаться от одного тела к другому или смещаться внутри тела, в молекуле, атоме. Заряд не зависит от системы отсчета.

Сегодня научная точка зрения такова, что изначально носители заряда — это элементарные частицы. Элементарные частицы нейтроны (электрически нейтральные), протоны (положительно заряженные) и электроны (заряженные отрицательно) образуют атомы.

Из протонов и нейтронов состоят ядра атомов, а электроны образуют оболочки атомов. Модули зарядов электрона и протона равны по величине элементарному заряду е, но по знаку заряды этих частиц противоположны между собой.

Взаимодействие электрических зарядов — Закон Кулона

Что касается непосредственно взаимодействия электрических зарядов друг с другом, то в 1785 году французский физик Шарль Кулон экспериментально установил и описал этот основной закон электростатики, фундаментальный закон природы, ни из каких других законов не вытекающий. Ученый в своей работе изучал взаимодействие неподвижных точечных заряженных тел, и измерял силы их взаимного отталкивания и притяжения.

Взаимодействие электрических зарядов — Закон Кулона

Кулон экспериментально установил следующее: "Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей и обратно пропорциональны квадрату расстояния между ними".

Это и есть формулировка Закона Кулона. И хотя точечных зарядов в природе не существует, только применительно к точечным зарядам и можно говорить о расстоянии между ними, в рамках данной формулировки Закона Кулона.

На самом же деле, если расстояния между телами сильно превосходят их размеры, то ни размер, ни форма заряженных тел, особо не повлияют на их взаимодействие, а значит тела для данной задачи справедливо можно будет считать точечными.

Пример

Рассмотрим такой пример. Подвесим на нитках пару заряженных шаров. Поскольку они как-то заряжены, то станут либо отталкиваться друг от друга, либо притягиваться друг к другу. Так как силы направлены вдоль прямой, соединяющей данные тела, - силы эти центральные.

Для обозначения сил, действующих со стороны каждого из зарядов на другой, запишем: F12 – сила действия второго заряда на первый, F21 – сила действия первого заряда на второй, r12 – радиус-вектор от второго точечного заряда к первому. Если заряды имеют одинаковый знак, то сила F12 будет сонаправлена радиусу-вектору, если же у зарядов разные знаки — F12 будет направлена противоположно радиусу-вектору.

При помощи закона взаимодействия точечных зарядов (Закона Кулона) можно теперь находить силу взаимодействия для любых точечных зарядов или точечных заряженных тел. Если же тела не точечные, то их мысленно разбивают на мелке элементы, каждый из которых можно было бы принять за точечный заряд.

После нахождения сил, действующих между всеми мелкими элементами, силы эти геометрически складывают, - находят результирующую силу. Элементарные частицы тоже взаимодействуют друг с другом согласно Закону Кулона, и по сей день не замечено никаких нарушений этого фундаментального закона электростатики.

Применение Закона Кулона в электротехнике

Закон Кулона находит применение во многих областях электротехники, таких как:

  • Расчет электрического поля и потенциала, создаваемого различными распределениями зарядов, например, точечными, линейными, поверхностными или объемными.
  • Расчет напряженности и силы, действующей на заряженные тела в электрическом поле, например, на конденсаторы, диэлектрики, электростатические генераторы или электрофоры.
  • Расчет емкости и энергии электрических конденсаторов, состоящих из двух проводников с разноименными зарядами, разделенных диэлектриком или вакуумом.
  • Расчет силы и момента, действующих на токоведущие элементы в магнитном поле, создаваемом другими токами, например, на катушки, соленоиды, трансформаторы или электромагниты.
  • Расчет индуктивности и энергии магнитных контуров, состоящих из проводников с токами, например, из катушек, соленоидов, тороидов или магнитопроводов.

Закон Кулона также является основой для вывода других фундаментальных законов электротехники, таких как закон Гаусса, закон Био-Савара, закон Ампера, закон Фарадея, закон Ленца и уравнения Максвелла.

Можно сказать, что в современной электротехнике нет области, где в том или ином виде не работал бы Закон Кулона. Начиная с электрического тока, заканчивая просто заряженным конденсатором. Особенно те области, которые касаются электростатики, — они на 100% связаны с Законом Кулона.

Рассмотрим только несколько примеров.

Простейший случай — введение диэлектрика. Сила взаимодействия зарядов в вакууме всегда больше силы взаимодействия тех же зарядов в условиях, когда между ними расположен какой-то диэлектрик.

Диэлектрическая проницаемость среды — это как раз та величина, которая позволяет количественно определить значения сил, независимо от расстояния между зарядами и от их величин. Достаточно силу взаимодействия зарядов в вакууме разделить на диэлектрическую проницаемость внесенного диэлектрика — получим силу взаимодействия в присутствии диэлектрика.

Применение Закона Кулона в электротехнике

Сложное исследовательское оборудование — ускоритель заряженных частиц. Базируется работа ускорителей заряженных частиц на явлении взаимодействия электрического поля и заряженных частиц. Электрическое поле совершает в ускорителе работу увеличивая энергию частицы.

Если рассмотреть здесь ускоряемую частицу как точечный заряд, а действие ускоряющего электрического поля ускорителя — как суммарную силу со стороны других точечных зарядов, то и в этом случае полностью соблюдается Закон Кулона. Магнитное поле лишь направляет частицу силой Лоренца, но не изменяет её энергии, только задаёт траекторию для движения частиц в ускорителе.

Защитные электротехнические сооружения. Важные электроустановки всегда оснащаются такой простой на первый взгляд вещью, как молниеотвод. А молниеотвод в своей работе тоже не обходится без соблюдения Закона Кулона. Во время грозы на Земле появляются большие индуцированные заряды — согласно Закону Кулона притягиваются в направлении грозового облака. На поверхности Земли возникает в результате сильное электрическое поле.

Напряжённость этого поля особенно велика возле острых проводников, и поэтому на заостренном конце молниеприемника зажигается коронный разряд — заряд из Земли стремится, повинуясь Закону Кулона, притянуться к противоположному заряду грозового облака.

Воздух вблизи молниеотвода в результате коронного разряда сильно ионизируется. Вследствие этого напряжённость электрического поля вблизи острия уменьшается (как и внутри любого проводника), индуцированные заряды не могут накапливаться на здании и вероятность возникновения молнии снижается. Если же молния, так случится, ударит в молниеотвод, то заряд просто уйдет в Землю, не повредит установку.

Молниеотводы бывают разных типов, в зависимости от их конструкции, материала и способа заземления. Самые распространенные молниеотводы - это простые металлические стержни, установленные на крышах зданий, высоких сооружений или отдельно стоящих опорах. Они соединяются с заземляющим устройством, которое может быть выполнено в виде земляной петли, земляного электрода или земляной шины. Заземление обеспечивает безопасный отвод заряда в Землю и защиту от перенапряжения.

Существуют также более современные молниеотводы, которые используют активные или пассивные элементы для усиления эффекта коронного разряда и создания ионизированного канала между молниеотводом и облаком. Такие молниеотводы называются ионизирующими, искровыми или нелинейными. Они позволяют сократить высоту молниеотвода и увеличить радиус защиты. Однако они также требуют более сложного обслуживания и контроля.

Андрей Повный

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика