Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
 
 


 

Справочник электрика / Основы электротехники

 

Потокосцепление и магнитный поток


Из опыта известно, что возле постоянных магнитов, равно как и вблизи проводников с током, можно наблюдать физические эффекты, такие как механическое действие на другие магниты или проводники с током, а также появление ЭДС в движущихся в данном пространстве проводниках.

Необычное состояние пространства возле магнитов и проводников с током, называется магнитным полем, количественные характеристики которого легко определяются по данным явлениям: по силе механического воздействия или по электромагнитной индукции, по сути — по величине наводимой в движущемся проводнике ЭДС.

Потокосцепление и магнитный поток

Явление наведения ЭДС в проводнике (явление электромагнитной индукции) проявляет себя в различных условиях. Вы можете двигать проводник через однородное магнитное поле, а можете просто изменять магнитное поле возле неподвижного проводника. В обоих случаях изменяющееся в пространстве магнитное поле станет наводить в проводнике ЭДС.

Явление наведения ЭДС в проводнике

Простое экспериментальное приспособление для исследования данного явления изображено на рисунке. Здесь проводящее (медное) кольцо соединено своими выводами с баллистическим гальванометром, по отклонению стрелки которого можно будет судить о количестве электрического заряда, проходящего через эту нехитрую цепь. Сначала разместим кольцо центром в какой-нибудь точке пространства около магнита (положение а), затем резко отодвинем кольцо (в положение б). Гальванометр покажет значение прошедшего по цепи заряда Q.

Второй эксперимент

Теперь поместим кольцо в другую точку, чуть-чуть подальше от магнита (в положение в), и снова, с такой же скоростью, резко отодвинем его в сторону (в положение г). Отклонение стрелки гальванометра будут меньше чем в первом эксперименте. А если увеличить сопротивление петли R, например заменив медь на вольфрам, то перемещая кольцо аналогичным образом мы заметим, что гальванометр покажет заряд еще меньший, однако величина этого движущегося через гальванометр заряда в любом случае будет обратно пропорциональна сопротивлению петли.

Эксперимент отчетливо демонстрирует, что пространство вокруг магнита в каждой его точке обладает каким-то свойством, чем-то таким, что напрямую влияет на количество заряда, проходящего через гальванометр, когда мы отодвигаем кольцо от магнита. Назовем это что-то, находящееся около магнита, магнитным потоком, и обозначим его количественную величину буквой Ф. Отметим выявленную зависимость Ф~Q*R и Q~Ф/R.

Новый эксперимент

Усложним эксперимент. Закрепим медную петлю в определенной точке напротив магнита, рядом с ним (в положении д), но теперь будем изменять площадь петли (перекрывая ее часть проводником). Показания гальванометра будут пропорциональны изменению площади кольца (в положении е).

Изменение магнитного потока

Следовательно действующий на петлю магнитный поток Ф от нашего магнита пропорционален площади петли. А вот магнитная индукция B, связанная с положением кольца относительно магнита, но не зависящая от параметров кольца, определяет свойство магнитного поля в каждой рассматриваемой точке пространства возле магнита.

Схема эксперимента

Продолжая эксперименты с медным кольцом, теперь будем изменять положение плоскости кольца относительно магнита в начальный момент (положение ж), и затем поворачивать его до положения вдоль оси магнита (положение з).

Заметим, что чем больше изменение угла между кольцом и магнитом — тем больше заряда Q протекает по цепи через гальванометр. Это значит, что магнитный поток через кольцо пропорционален косинусу угла между магнитом и нормалью к плоскости кольца.

Магнитный поток

Таким образом можно заключить, что магнитная индукция B – есть величина векторная, направление которой в данной точке совпадает с направлением нормали к плоскости кольца в том его положении, когда при резком отодвигании кольца далеко от магнита, проходящий по цепи заряд Q максимален.

Вместо магнита в эксперименте можно применять катушку электромагнита, отодвигать эту катушку или изменять в ней ток, усиливая или уменьшая таким образом магнитное поле, пронизывающее экспериментальный виток.

Площадь, пронизываемая магнитным полем, не обязательно может быть ограничена круглым витком, это может быть в принципе любая поверхность, магнитный поток через которую определяется тогда путем интегрирования:

Магнитный поток

Выходит, что магнитный поток Ф — это поток вектора магнитной индукции B через поверхность S. А магнитная индукция B – это плотность магнитного потока Ф в данной точке поля. Магнитный поток Ф измеряется в единицах «Вебер» - Вб. Магнитная индукция B измеряется в единицах «Тесла» - Тл.

Если все пространство вокруг постоянного магнита или катушки с током исследовать подобным образом, при помощи витка с гальванометром, то можно построить в этом пространстве бесчисленное множество так называемых «магнитных линий» - линий вектора магнитной индукции B - направление касательных в каждой точке которых будет соответствовать направлению вектора магнитной индукции B в данных точках исследуемого пространства.

Разделив пространство магнитного поля воображаемыми трубками единичного поперечного сечения S=1, можно получить так называемые единичные магнитные трубки, оси которых называют единичными магнитными линиями. При помощи данного подхода можно наглядно изобразить количественную картину магнитного поля, и в этом случае магнитный поток будет равен количеству линий, проходящих через выбранную поверхность.

Количественная картина магнитного поля

Магнитные линии непрерывны, они выходят из северного полюса и обязательно входят в южный, поэтому суммарный магнитный поток через любую замкнутую поверхность равен нулю. Математически это выглядит так:

Суммарный магнитный поток через любую замкнутую поверхность равен нулю

Рассмотрим магнитное поле, ограниченное поверхностью цилиндрической катушки. По сути — магнитный поток, пронизывающий поверхность, образованную витками данной катушки. В этом случае общую поверхность можно разделить на отдельные поверхности для каждого из витков катушки. На рисунке видно, что поверхности верхних и нижних витков катушки пронизываются четырьмя единичными магнитными линиями, а поверхности витков в середине катушки — восемью.

Катушка

Чтобы найти величину полного магнитного потока через все витки катушки, необходимо суммировать магнитные потоки, пронизывающие поверхности каждого из ее витков, то есть магнитные потоки, сцепленные с отдельными витками катушки:

Ф = Ф1+Ф2+Ф3+Ф4+Ф5+Ф6+Ф7+Ф8, если в катушке 8 витков.

Для примера симметричной катушки, изображенной на предыдущем рисунке:

Ф верхних витков = 4+4+6+8 = 22;

Ф нижних витков = 4+4+6+8 = 22.

Ф общее = Ф верхних витков + Ф нижних витков = 44.

Здесь и вводится понятие «потокосцепление». Потокосцепление — это общий магнитный поток, сцепленный со всеми витками катушки, численно равный сумме магнитных потоков, сцепленных с отдельными ее витками:

Потокосцепление

Фm - магнитный поток, создаваемый током через один виток катушки; wэ - эффективное число витков в катушке;

Потокосцепление — величина виртуальная, так как реально нет никакой суммы отдельных магнитных потоков, а есть общий магнитный поток. Тем не менее, когда реальное распределение магнитного потока по виткам катушки неизвестно, а известно потокосцепление, то катушку можно заменить эквивалентной, вычислив количество эквивалентных одинаковых витков, необходимых для получения требуемого общего магнитного потока.