Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Заметки электрика / Трансформаторы и электрические машины / Исполнительные двигатели и тахогенераторы постоянного тока


 Школа для электрика в Telegram

Исполнительные двигатели и тахогенераторы постоянного тока



Исполнительные двигатели постоянного тока

Исполнительные двигатели постоянного токаИсполнительные двигатели постоянного тока — маломощные машины, используемые в автоматике и телемеханике, в системах автоматического управления, регулирования и- контроля автоматизированных установок, где они преобразуют электрический сигнал измерительного органа — напряжение управления — в угловое перемещение вала для воздействия на управляющий, регулирующий или контролирующий аппарат. В тех случаях, когда поступающий сигнал недостаточен для приведения в действие исполнительного двигателя, применяют магнитный или полупроводниковый усилитель мощности.

Исполнительные двигатели обычно работают в условиях частых пусков, остановок и реверсов. Они отличаются значительным начальным пусковым моментом и быстродействием. Зависимости вращающего момента и скорости якоря от напряжения управления у них в большинстве случаев близки к линейным.

Исполнительные двигатели постоянного токаВ зависимости от системы питания цепей двигателя различают исполнительные двигатели с якорным управлением и с полюсным управлением. При якорном управлении обмоткой управления является обмотка якоря, в связи с чем напряжение управления подводят к ее зажимам, а неизменный ток возбуждения обеспечивает независимый источник электрической энергии постоянного напряжения. В случае полюсного управления обмоткой управления служит обмотка возбуждения главных полюсов и напряжение управления подводят к ее зажимам, а напряжение на зажимах якоря, задаваемое независимым источником электрической энергии постоянного напряжения, сохраняется неизменным .

Обычно используют якорное управление. Изменение полярности напряжения управления вызывает противоположное направление вращения якоря.

Исполнительные двигатели постоянного тока изготовляют номинальной мощности от долей ватта до 600 Вт нормальной и специальной конструкций.

Исполнительные двигатели постоянного токаДвигатели нормальной конструкции аналогичны машинам постоянного тока общего применения, но отличаются от них тем, что станина с главными полюсами так же, как и якорь, собрана из тонких изолированных друг от друга листов электротехнической стали, что способствует улучшению свойств этих машин в переходных режимах. Кроме того, добавочные полюсы в этих машинах отсутствуют, так как реакция якоря невелика и процессы коммутации вполне удовлетворительны. Поскольку скорость якоря небольшая, вентилятор на валу таких двигателей не предусмотрен.

К двигателям специальной конструкции относятся магнитоэлектрические машины с возбуждением основного магнитного поля с помощью постоянных магнитов, а также малоинерционные машины, отличающиеся конструкцией якоря. К последним относятся: двигатели с полым немагнитным якорем — полым тонкостенным цилиндром из пластмассы с запрессованной обмоткой из медного провода с внутренним неподвижным ферромагнитным магнитопроводом, укрепленным на подшипниковом щите, и менее долговечные двигатели с дисковым якорем — тонким немагнитным диском из керамики, текстолита, стекла, а иногда из алюминия с печатной обмоткой, представляющей совокупность радиально расположенных по обе стороны диска проводников из медной фольги, по которой скользят серебряно-графитные щетки. Названные конструкции отличаются малым моментом инерции якоря, что обеспечивает высокое быстродействие исполнительного двигателя.

Исполнительные двигатели постоянного тока

Масса исполнительных двигателей постоянного тока в 2 - 4 раза меньше, чем масса одинаковых по номинальной мощности исполнительных асинхронных двигателей, а к. п. д. их при номинальной мощности 5...10 Вт составляет около 0,3 и достигает значения 0,65 и несколько выше для двигателей номинальной мощностью 200 - 300 Вт.

Исполнительные двигатели постоянного тока


Тахогенераторы постоянного тока

Тахогенераторы постоянного токаТахогенераторы постоянного тока — машины небольшой мощности, предназначенные для преобразования механической величины в электрический сигнал — выходное напряжение. В частности, их используют для контроля и измерения скорости вала исполнительного устройства, с которым соединен вал тахогенератора, зажимы якоря которого соединены с измерительным прибором. Помимо этого, тахогенераторы применяют в электромеханических счетно-решающих устройствах для выполнения вычислительных операций, а также в устройствах автоматической отработки генерируемых ускоряющих и успокаивающих сигналов.

Тахогенераторы бывают магнитоэлектрические с возбуждением основного магнитного поля с помощью постоянных магнитов и электродинамические с электромагнитным возбуждением, обусловленным М. д. с. обмотки возбуждения, питаемой от независимого источника электрической энергии постоянного напряжения.

Выходное напряжение тахогенератора в режиме холостого хода изменяется линейно в зависимости от скорости якоря, а при нагрузке эта линейность несколько нарушается, причем тем больше, чем меньшим сопротивлением обладает измерительный прибор, присоединенный к зажимам якоря. Все же для каждого тахогенератора существует относительно небольшой диапазон измеряемых скоростей, в пределах которого при определенном достаточно большом сопротивлении измерительного прибора и неизменных условиях цепи возбуждения выходную характеристику можно считать практически линейной.

Схема включения тахогенератора постоянного тока независимого возбуждения

Схема включения тахогенератора постоянного тока независимого возбуждения

Тахогенераторы постоянного токаСущественный недостаток тахогенераторов постоянного тока — пульсация выходного напряжения из-за незначительного периодического изменения магнитного потока вследствие неравномерности воздушного зазора и неравенства проводимостей якоря в различных радиальных направлениях, в том числе обусловленных зубчатой конструкцией его магнитопровода, а также из-за вибрации щеток, неровностей и эллиптичности коллектора и коммутационных процессов — в значительной мере устранен в тахогенераторе с полым якорем, который устроен так же, как и малоинерционный исполнительный двигатель постоянного тока с аналогичным якорем.

Неточность установки щеток по геометрической нейтрали коллектора тахогенсратора приводит к асимметрии выходного напряжения, т. е. к генерированию двух различных напряжений в обмотке якоря при противоположных направлениях его вращения с одинаковой скоростью. При правильном расположении щеток асимметрия напряжений находится в пределах от 0,3 до 1% номинального напряжения тахогенератора.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика