Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Изучайте основы электротехники на нашем сайте и освоите методы расчетов, различные типы систем и применение электротехнических устройств. Раздел "Основы электротехники" поможет вам укрепить ваши знания и развить навыки в этой захватывающей области.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Основы электротехники / Система относительных единиц


 Школа для электрика в Telegram

Система относительных единиц



Система относительных единицДля упрощения вычислений при расчетах параметров в системах передачи электроэнергии, применяют систему относительных единиц. Этот способ подразумевает выражение текущего значения системной величины через принятую за единицу базовую (базисную) величину.

Так, относительная величина выражается как множитель базового значения (тока, напряжения, сопротивления, мощности и т. д.), и не зависит, будучи выражена в относительных единицах, от уровня напряжения. В англоязычной литературе относительные единицы обозначаются pu или p.u. (от per-unit system — система относительных единиц).

Например, для однотипных трансформаторов, падение напряжения, импеданс и потери отличаются при разном подаваемом напряжении по абсолютной величине. Но по относительной величине они будут оставаться примерно одинаковыми. Когда расчет произведен, то результаты легко переводятся обратно в системные единицы (в амперы, в вольты, в омы, в ватты и т. д.), поскольку базисные величины, с которыми сравнивали текущие значения, известны изначально.

Как правило, относительные единицы удобны при расчетах передаваемой мощности, но часто бывает, что параметры генераторов моторов и трансформаторов указываются и в относительных единицах, поэтому каждому инженеру следует быть знакомым с концепцией относительных единиц. Единицы мощности, силы тока, напряжения, импеданса, адмиттанса — используются в системе относительных единиц. Мощность и напряжение являются независимыми величинами, это продиктовано свойствами реальных энергосистемам.

Все системные сетевые величины могут быть выражены как множители выбранных базисных значений. Так, если говорить о мощности, то в качестве базисной величины можно выбрать номинальную мощность трансформатора. Бывает, что мощность, полученная в конкретный момент времени в виде относительного значения сильно облегчает вычисления. Базис для напряжения — номинальное напряжение шины и т. д.

Вообще, контекст всегда позволяет понять, о какой относительной величине идет речь, и даже наличие одного и того же символа «pu» в англоязычной литературе не будет вас смущать.

Итак, все системные физические величины являются именованными. Но при переводе их в относительные единицы (по сути — в проценты), характер теоретических выкладок обобщается.

Под относительным значением какой-нибудь физической величины понимается ее отношение к некоторому базовому значению, то есть к значению, выбранному за единицу при данном измерении. Относительная величина обозначается символом звездочки снизу.

Часто при расчетах в качестве базисных величин принимают: базисное сопротивление, базисный ток, базисное напряжение и базисную мощность.

Нижний индекс «б» обозначает, что это базисная величина.

Тогда относительные единицы измерения будут называться относительными базисными:

Звездочка обозначает относительную величину, буква «б» - базис. ЭДС относительная базисная, ток относительный базисный и т. д. И относительные базисные единицы будут определены следующими выражениями:

К примеру, для измерения угловых скоростей, за единицу принимают угловую синхронную скорость, и значит угловая скорость синхронная будет равна угловой скорости базисной.

А произвольная угловая скорость тогда может быть выражена в относительных единицах:

Соответствующим образом в качестве базисных могут быть приняты для потокосцепления и для индуктивности следующие соотношения:

Здесь базисное потокосцепление — потокосцепление, индуцирующее базисное напряжение при базисной угловой скорости.

Так, если синхронная угловая скорость принята за базис, то:

в относительных единицах ЭДС равно потокосцеплению, а индуктивное сопротивление равно индуктивности. Так получается потому, что базисные единицы выбраны соответствующим образом.

Далее рассмотрим в относительных и базисных единицах фазное напряжение:

Легко видеть, что фазное напряжение в относительных базисных единицах оказывается равным линейному относительному базисному напряжению. Аналогичным образом и амплитудное значение напряжения в относительных единицах оказывается равным действующему:

Из этих зависимостей становится очевидным, что в относительных единицах даже мощность трех фаз и мощность одной фазы равны, так же как и токи возбуждения, и потоки, и ЭДС генератора, - также оказываются равными между собой.

Важно здесь отметить, что и для любого элемента электрической цепи, относительное сопротивление будет равно относительному падению напряжения в условиях номинальной мощности, подаваемой в цепь.

При расчетах токов короткого замыкания, пользуются четырьмя базисными параметрами: ток, напряжение, сопротивление и мощность. Базисные значения напряжения и мощности принимают независимыми, и через них потом выражают базисные сопротивление и ток. Из уравнения мощности трехфазной сети — ток, затем по закону Ома — сопротивление:


Так как базисная величина может быть выбрана произвольно, то одна и та же физическая величина может, при выражении ее в относительных единицах, иметь различные числовые значения. Относительные сопротивления генераторов, двигателей, трансформаторов, задаются поэтому в относительных единицах посредством введения относительных номинальных единиц. Sн — номинальная мощность. Uн — номинальное напряжение. А относительные номинальные величины записываются с нижним индексом «н»:

Для нахождения номинальных сопротивлений и токов применяют стандартные формулы:

Чтобы установить связь между относительными единицами и именованными величинами, сначала выразим связь между относительной базисной и базисной величинами:

Распишем базовое сопротивление через мощность, и подставим:

Так можно перевести именованную величину в относительную базисную.

И аналогичным образом можно установить связь между относительными номинальными единицами и именованными:

Для вычисления сопротивления в именованных единицах при известных относительных номинальных, используют следующую формулу:

Связь между относительными номинальными единицами и относительными базисными единицами устанавливает следующая формула:

При помощи этой формулы относительные номинальные единицы можно перевести в относительные базисные единицы.

В энергосистемах с целью ограничения токов короткого замыкания устанавливают токоограничительные реакторы, по сути — линейные индуктивности. Для них задаются номинальные напряжение и ток, но не мощность.

С учетом того, что

и преобразовав приведенные выше выражения для относительного номинального и относительного базового сопротивлений, получим:

Могут быть выражены относительные величины и в процентах:

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика