Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике

ПОИСК ПО САЙТУ:

 
  
  

 

Автоматизация производственных процессов

Контроль и регулирование основных технологических параметров: расхода, уровня, давления и температуры

 

Контроль и регулирование основных технологических параметров: расхода, уровня, давления и температурыСовокупность единичных операций образует конкретные технологические процессы. В общем случае технологический процесс реализуется посредством технологических операций, которые выполняются параллельно, последовательно или комбинированно, когда начало последующей операции сдвинуто по отношению к началу предыдущей.

Управление технологическим процессом представляет собой организационно-техническую задачу, и решают ее сегодня, создавая автоматические или автоматизированные системы управления технологическим процессом.

Целью управления технологическим процессом может быть: стабилизация некоторой физической величины, изменение ее по заданной программе или, в более сложных случаях, оптимизация некоторого обобщающего критерия, наибольшая производительность процесса, наименьшая себестоимость продукта и т. д.

К числу типовых технологических параметров, подлежащих контролю и регулированию, относят расход, уровень, давление, температуру и ряд показателей качества.

Замкнутые системы используют текущую информацию о выходных величинах, определяют отклонение ε(t) управляемой величины Y(t) от ее заданного значения Y(o) и принимают действия к уменьшению или полному исключению ε(t).

Простейшим примером замкнутой системы, называемой системой регулирования по отклонению, служит показанная на рисунке 1 система стабилизации уровня воды в баке. Система состоит из измерительного преобразователя (датчика) 2 уровня, устройства 1 управления (регулятора) и исполнительного механизма 3, управляющего положением регулирующего органа (клапана) 5.

Функциональная схема автоматической системы управления

Рис. 1. Функциональная схема автоматической системы управления: 1 - регулятор, 2 - измерительный преобразователь уровня, 3 - исполнительный механизм, 5 - регулирующий орган.

Регулирование расхода

Системы регулирования расхода характеризуются малой инерционностью и частой пульсацией параметра.

Обычно управление расходом — это дросселирование потока вещества с помощью клапана или шибера, изменение напора в трубопроводе за счет изменения частоты вращения привода насоса или степени байпасирования (отведения части потока через дополнительные каналы).

Принципы реализации регуляторов расхода жидких и газообразных сред показаны на рисунке 2, а, сыпучих материалов — на рисунке 2, б.

Схемы регулирования расхода

Рис. 2. Схемы регулирования расхода: а — жидких и газообразных сред, б — сыпучих материалов, в — соотношения сред.

В практике автоматизации технологических процессов встречаются случаи, когда требуется стабилизация соотношения расходов двух или более сред.

В схеме, показанной на рисунке 2, в, поток к G1 — ведущий, а поток G2 = γG — ведомый, где γ — коэффициент соотношения расходов, который устанавливают в процессе статической настройки регулятора.

При изменении ведущего потока G1 регулятор FF пропорционально изменяет ведомый поток G2.

Выбор закона регулирования зависит от требуемого качества стабилизации параметра.

Регулирование уровня

Системы регулирования уровня имеют те же особенности, что и системы регулирования расхода. В общем случае поведение уровня описывается дифференциальным уравнением

D(dl/dt) = Gвх - Gвых +Gобр,

где S — площадь горизонтального сечения емкости, L — уровень, Gвх, Gвых — расход среды на входе и выходе, Gобр — количество среды, увеличивающейся или уменьшающейся в емкости (может быть равно 0) в единицу времени t.

Постоянство уровня свидетельствует о равенстве количеств подаваемой и расходуемой жидкости. Это условие может быть обеспечено воздействием на подачу (рис. 3, а) или расход (рис. 3, б) жидкости. В варианте регулятора, показанном на рисунке 3, в, используют для стабилизации параметра результаты измерений подачи и расхода жидкости.

Импульс по уровню жидкости — корректирующий, он исключает накопление ошибки вследствие неизбежных погрешностей, возникающих при изменении подачи и расхода. Выбор закона регулирования также зависит от требуемого качества стабилизации параметра. При этом возможно использование не только пропорциональных, но также и позиционных регуляторов.

Схемы систем регулирования уровня

Рис. 3. Схемы систем регулирования уровня: а — с воздействием на подачу, б и в — с воздействием на расход среды.

Регулирование давления

Постоянство давления, как и постоянство уровня, свидетельствует о материальном балансе объекта. В общем случае изменение давления описывается уравнением:

V(dp/dt) = Gвх - Gвых +Gобр,

где V— объем аппарата, р — давление.

Способы регулирования давления аналогичны способам регулирования уровня.

Регулирование температуры

Температура — показатель термодинамического состояния системы. Динамические характеристики системы регулирования температуры зависят от физико-химических параметров процесса и конструкции аппарата. Особенность такой системы — значительная инерционность объекта и нередко измерительного преобразователя.

Принципы реализации регуляторов температуры аналогичны принципам реализации регуляторов уровня (рис. 2) с учетом управления расходом энергии в объекте. Выбор закона регулирования зависит от инерционности объекта: чем она больше, тем закон регулирования сложнее. Постоянная времени измерительного преобразователя может быть снижена за счет увеличения скорости движения теплоносителя, уменьшения толщины стенок защитного чехла (гильзы) и т. д.

Регулирование параметров состава и качества продукта

При регулировании состава или качества продукта возможна ситуация, когда параметр (например, влажность зерна) измеряют дискретно. В этой ситуации неизбежны потеря информации и снижение точности динамического процесса регулирования.

Рекомендуемая схема регулятора, стабилизирующего некоторый промежуточный параметр Y(t), значение которого зависит от основного регулируемого параметра — показателя качества продукта Y(ti), показана на рисунке 4.

Схема системы регулирования качества продукта

Рис. 4. Схема системы регулирования качества продукта: 1 — объект, 2— анализатор качества, 3 — экстраполяционный фильтр, 4 — вычислительное устройство, 5 — регулятор.

Вычислительное устройство 4, используя математическую модель связи между параметрами Y(t) и Y(ti), непрерывно оценивает показатель качества. Экстраполяционный фильтр 3 выдает оценочный параметр качества продукта Y(ti) в промежутках между двумя измерениями.




Статьи близкие по теме:
  • Системы автоматического регулирования температуры
  • Статическое и астатическое регулирование
  • Настройка ПИД-регулятора преобразователя частоты
  • Классификация систем автоматического управления
  • Классификация систем управления по алгоритму функционирования



  • Школа для электрика | Основы электротехники | Электричество для чайников
    Электрические аппараты | Справочник электрика
     Электроснабжение | Электрические измерения | Электрические схемы
     Электромонтажные работы | Пусконаладочные работы | Эксплуатация электрооборудования

    Статьи и схемы

    » Школа для электрика
    » Электричество для чайников
    » Электробезопасность
    » Электрические схемы
    » Электроснабжение
    » Основы электротехники
    » Основы электроники
    » Электрические машины
    » Электрические аппараты
    » Автоматизация производственных процессов
    » Альтернативная энергетика
    » Заземление и молниезащита
    » Монтаж электрооборудования
    » Наладка электрооборудования
    » Релейная защита и автоматика
    » Ремонт электрооборудования
    » Экономия электроэнергии
    » Эксплуатация электрооборудования
    » Электрические измерения
    » Электрические системы и сети
    » Электрические станции и подстанции
    » Электрическое освещение
    » Электрооборудование промышленных предприятий
    » Электропривод
    » Электротехнические материалы
    » Электротехнология
    » Статьи на разные темы
    » Видеокурсы и другие обучающие материалы

    Автоматические выключатели ВА 47-60 IEK