Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
 
 


 

Основы электроники

 

Защита затвора полевого транзистора



Не будет преувеличением назвать изолированный затвор полевого транзистора довольно чувствительной его частью, которая нуждается в индивидуальной защите. Пробой затвора — явление довольно нехитрое. Оно может произойти по нескольким причинам: электростатическая наводка, паразитные колебания в цепях управления, и конечно эффект Миллера, когда возникающее на коллекторе перенапряжение через емкостную связь оказывает вредоносное действие на затвор.

Полевые транзисторы

Так или иначе, данные причины можно предотвратить, надежно обеспечив соблюдение правил эксплуатации транзистора: не превышать предельно допустимое напряжение затвор-исток, обеспечить надежное и своевременное запирание во избежание сквозных токов, сделать соединительные проводники цепей управления как можно более короткими (для достижения наименьшей паразитной индуктивности), а также максимально защитить сами цепи управления от помех. В таких условиях ни одна из перечисленных причин просто не сможет проявить себя и нанести вред ключу.

Итак, что касается непосредственно затвора, то для его защиты полезно применять специальные цепи, особенно если соединение драйвера с затвором и истоком невозможно выполнить вплотную в силу конструктивных особенностей разрабатываемого устройства. В любом случае, когда речь заходит о защите затвора, выбор падает на одну из четырех основных схем, каждая из которых идеально подходит для тех или иных условий, о которых будет сказано ниже.

Одиночный резистор

Защита затвора полевого транзистора резистором

Элементарную защиту затвора от статического электричества способен обеспечить одиночный резистор номиналом в 200 кОм, будучи установлен вплотную между стоком и истоком транзистора. В некоторой мере такой резистор способен помешать и перезаряду затвора, если по какой-то причине негативную роль сыграет импеданс цепей драйвера.

Решение с одиночным резистором как нельзя идеально подойдет для защиты транзистора в низкочастотном устройстве, где он непосредственно коммутирует чисто активную нагрузку, то есть где в цепь коллектора включена не индуктивность дросселя или обмотки трансформатора, а нагрузка типа лампы накаливания или светодиода, когда об эффекте Миллера не может быть и речи.

Стабилитрон с диодом Шоттки или супрессор (TVS)

Защита затвора полевого транзистора стабилитроном

Классика жанра для защиты затворов транзисторов в сетевых импульсных преобразователях — стабилитрон в паре с диодом Шоттки или супрессор. Данная мера позволит защитить цепь затвор-исток от разрушительного влияния эффекта Миллера.

В зависимости от режима работы ключа, выбирается стабилитрон на 13 вольт (при напряжении драйвера 12 вольт) или супрессор с аналогичным типовым рабочим напряжением. При желании можно добавь сюда и резистор на 200 кОм.

Назначение супрессора — быстро поглотить импульсную помеху. Поэтому, если сразу известно, что режим работы ключа будет жестким, соответственно и условия защиты потребуют от ограничителя рассеивать высокие импульсные мощности и очень быстрой реакции — в этом случае лучше выбрать супрессор. Для режимов же более мягких — подойдет стабилитрон с диодом Шоттки.

Диод Шоттки на цепь питания драйвера

Защита диодом Шоттки

Когда низковольтный драйвер установлен на плате вплотную к управляемому транзистору, можно использовать для защиты одиночный диод Шоттки, подключенный между затвором транзистора и цепью низковольтного питания драйвера. И даже если по какой-то причине напряжение на затворе и окажется превышено (станет выше, чем напряжение питания драйвера плюс падение напряжения на диоде Шоттки), лишний заряд просто уйдет в цепь питания драйвера.

Профессиональные разработчики силовой электроники рекомендуют использовать данное решение только в том случае, если расстояние от ключа до драйвера не превышает 5 см. Не помешает здесь и защитный резистор от статики, о котором было сказано выше.