Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
 
 


 

Справочник электрика / Электрические аппараты

 

Электромагнитные тормозные устройства


В некоторых устройствах, с целью торможения вращающихся элементов машины, применяется электромагнитный дисковый тормоз электродвигателя. Электромагнитное тормозное устройство монтируется прямо в двигателе или на двигателе, и по сути представляет собой вспомогательный двигатель или приводной узел, отвечающий всем требованиям касательно как позиционирования агрегата, так и с точки зрения безопасной его эксплуатации. Он включается пружинами и отпускается с помощью электромагнита.

Данное решение позволяет не только обеспечить безопасное торможение двигателя в случае аварии или позиционировать исполнительный орган машины во время ее функционирования, но и просто сокращает время работы машины во время ее торможения.

Электромагнитный тормоз

Существуют два типа дисковых электромагнитных тормозных устройств: дисковый тормоз переменного тока и дисковый тормоз постоянного тока (в зависимости от формы тока, которым питается данный тормоз). Для варианта тормоза, питаемого постоянным током, вместе с двигателем поставляется также и выпрямитель, при помощи которого постоянный ток получается из переменного, которым питается сам двигатель.

Конструкция тормозного устройства включает в себя: электромагнит, якорь и диск. Электромагнит изготовлен в виде набора катушек, расположенных в специальном корпусе. Якорь служит исполнительным элементом тормоза, и представляет собой антифрикционную поверхность, которая взаимодействует с тормозным диском.

Электродвигатель с электромагнитным тормозным устройством

Сам диск, с нанесенным на него фрикционным материалом, перемещается по зубцам втулки на валу двигателя. Когда в катушки тормозного устройства подано напряжение, якорь оттянут, и вал двигателя может свободно вращаться вместе с тормозным диском.

Затормаживание обеспечивается в свободном состоянии, когда пружины нажимают на якорь, и он воздействует на тормозной диск, вызывая тем самым остановку вала.

Тормоза такого типа находят обширное применение в системах с электрическим приводом. На случай аварийного отсутствия питания тормозного устройства, может быть предусмотрена возможность снять тормоз вручную.

 

Электромагнитный тормоз

В подъемно-транспортных машинах используется колодочный электромагнитный тормоз (ТКГ), удерживающий вал в заторможенном состоянии когда машина выключена.

ТКП — тормоз постоянного тока серии МП. ТКГ — тормоз электрогидравлический с толкателем серии ТЭ. Электромагнит тормоза ТКГ включает в себя привод и механическую часть, которая в свою очередь включает: подставку, пружины, систему рычагов и тормозные колодки.

Тормозное устройство устанавливается вертикально, причем тормозной шкив имеет горизонтальное положение. Механические части тормозных устройств питаемых переменным или постоянным током для шкивов одного и того же диаметра одинаковы.

Обычно такие устройства имеют буквенное обозначение ТК и число, обозначающее диаметр шкива для торможения. В момент включения питания рычаги нейтрализуют действие пружин и освобождают шкив для обеспечения ему возможности свободного вращения.

Применение электромагнитного тормоза

Электромагнитные тормоза находят применение в:

  • блокировке подъемных кранов, лифтов, укладочных машин и т. д. в выключенном состоянии; в механизмах остановки конвейеров, намоточных и ткацких станков, задвижек, прокатного оборудования и т. д.;

  • для сокращения выбега (времени холостого хода во время остановки) машин;

  • в системах аварийной остановки эскалаторов, мешалок и т. д.;

  • для остановки с позиционированием в точном положении в определенный момент времени.

В буровых установках применяется индукционное торможение, основанное на взаимодействии магнитных полей индуктора, в роли которого выступает электромагнит, и якоря, в обмотке которого наводятся токи, магнитные поля которых тормозят «причину их вызывающую» (см. Закон Ленца), создавая тем самым необходимый тормозящий момент ротору.

Рассмотрим это явление на рисунке. Когда в обмотке статора включается ток, его магнитное поле индуцирует вихревой ток в роторе. На вихревой ток в роторе действует сила Ампера, момент которой и является в данном случае тормозящим.

Как известно, в тормозном режиме способны работать асинхронные и синхронные машины переменного тока, а также машины постоянного тока, когда вал движется относительно статора. Если вал неподвижен (относительное перемещение отсутствует), то тормозящего действия не будет.

Таким образом, тормоза на основе электродвигателей применяются для затормаживания движущихся валов, а не для удержания их в состоянии остановки. При этом интенсивность замедления движения механизма можно в таких случаях плавно регулировать, что иногда удобно.

На следующем рисунке приведена схема работы гистерезисного тормоза. Когда в обмотку статора подается ток, на ротор действует вращающий момент, в данном случае он тормозящий, и возникает здесь из-за явления гистерезиса от перемагничивания монолитного ротора.

Физическая причина в том, что намагниченность ротора становится таковой, что его магнитный поток совпадает по направлению с потоком статора. И если ротор попытаться из такого положения повернуть (так чтобы статор оказался относительно ротора в положении Б), то он будет стараться вернуться обратно в положение А за счет тангенциальных составляющих магнитных сил, - так и возникает в данном случае торможение.