Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Электрические аппараты / Электромагнитные муфты


 Школа для электрика в Telegram

Электромагнитные муфты



Электромагнитные муфтыЭлектромагнитная муфта по принципу действия напоминает асинхронный двигатель, в то же время отличаясь от него тем, что магнитный поток в ней создастся не трехфазной системой, а возбуждаемыми постоянным током вращающимися полюсами.

Электромагнитные муфты применяют для замыкания и размыкания кинематических цепей без прекращения вращения, например в коробках скоростей и передач, а также для пуска, реверсирования и торможения приводов станков. Применение муфт позволяет разделить пуск двигателей и механизмов, уменьшить время пускового тока, устранить удары как в электродвигателях, так и в механических передачах, обеспечить плавность разгона, устранить перегрузки, проскальзывания и др. Резкое уменьшение пусковых потерь в двигателях снимает ограничение по допустимому числу включений, что очень важно при цикличной работе двигателя.

Электромагнитная муфта является индивидуальным регулятором скорости и представляет собой электрическую машину, служащую для передачи вращающего момента от ведущего вала к ведомому при помощи электромагнитного поля, и состоит из двух основных вращаюших частей: якоря (в большинстве случаев представляет собой массивное тело) и индуктора с обмоткой возбуждения. Якорь и индуктор механически жестко не связаны между собой. Как правило, якорь соединяется с приводным двигателем, а индуктор — с рабочей машиной.

При вращении приводным двигателем ведущего вала муфты в случае отсутствия тока в обмотке возбуждения индуктор, а вместе с ним и ведомый вал остаются неподвижными. При подаче постоянного тока в обмотку возбуждения в магнитной цепи муфты (индуктор — воздушный зазор-якорь) возникает магнитный поток. При вращении якоря относительно индуктора в первом наводится ЭДС и возникает ток, взаимодействие которою с магнитным полем воздушного зазора обусловливает появление электромагнитного вращающего момента.


Электромагнитные индукционные муфты можно подразделить по следующим признакам:

  • по принципу вращающего момента (на асинхронные и синхронные);

  • по характеру распределения магнитной индукции в воздушном зазоре;

  • по конструкции якоря (с массивным якорем и с якорем, имеющим обмотку типа беличьей клетки);

  • по способу подачи питания в обмотку возбуждения; по способу охлаждения.

Наибольшее распространение получили муфты панцирного и индукторного типа благодаря простоте конструкции. Такие муфты состоят в основном из зубчатого индуктора с обмоткой возбуждения, насаженного на один вал с токопроводящими контактными кольцами, и гладкого цилиндрического массивного ферромагнитного якоря, соединенного с другим валом муфты.

Устройство, принцип действия и характеристики электромагнитных муфт.

Электромагнитные муфты, применяемые для автоматического управления, разделяются на муфты сухого и вязкого трения и муфты скольжения.

Муфта сухого трения производит передачу мощности с одного вала на другой через диски трения 3. Диски имеют возможность перемещаться по шлицам оси вала и ведомой полумуфты. При подаче тока в обмотку 1 якорь 2 сжимает диски, между которыми возникает сила трения. Относительные механические характеристики муфты приведены на рис 1, б.

Муфты вязкого трения имеют постоянный зазор δ между ведущей 1 и ведомой 2 полумуфтами. В зазоре с помощью обмотки 3 создаётся магнитное поле, которое воздействует на заполнитель (ферритовое железо с тальком или графитом) и образует элементарные цепочки магнитов. При этом заполнитель как бы схватывает ведомую и ведущую полумуфты. При выключении тока магнитное поле пропадает, цепочки разрушаются и полумуфты проскальзывают относительно друг друга. Относительная механическая характеристика муфты приведена на рис. 1, д. Эти электромагнитные муфты позволяют плавно регулировать скорость вращения при больших нагрузках на выходном валу.

Электромагнитные муфты

Электромагнитные муфты: а - схема муфты сухого трения, б - механическая характеристика муфты трения, в - схема муфты вязкого трения, г - схема схватывания ферритового наполнителя, д - механическая характеристика муфты вязкого трения, е - схема муфты скольжения, ж - механическая характеристика муфты скольжения.

Муфта скольжения состоит из двух зубовидных полумуфт (см. рис. 1, е) и катушки. При подаче тока в катушку образуется замкнутое магнитное поле. При вращении муфты проскальзывают одна относительно другой, в результате чего образуется переменный магнитный поток, это и является причиной возникновения э. д. с. и токов. Взаимодействие образовавшихся магнитных потоков приводит во вращение ведомую полумуфту.

Характеристика фрикционной полумуфты приведена на рис. 1, ж. Основное назначение таких муфт - создавать наиболее благоприятные условия пуска, а также сглаживать динамические нагрузки при работе двигателя.

Электромагнитные муфты скольжения имеют ряд недостатков: низкий коэффициент полезного действия при малых скоростях, малый передаваемый момент, низкая надежность при резком изменении нагрузки и значительная инертность.
На рисунке ниже приведена принципиальная схема управления муфтой скольжения при наличии обратной связи по скорости с помощью тахогенратора, связанного с выходным валом электропривода. Сигнал с тахогенератора сравнивается с задающим сигналом, и разность этих сигналов подается на усилитель У, с выхода которого питается обмотка возбуждения муфты ОВ.

Принципиальная схема управления муфты скольжения и искусственные механические характеристики при автоматическом регулировании

Принципиальная схема управления муфты скольжения и искусственные механические характеристики при автоматическом регулировании

Эти характеристики располагаются между кривыми 5 и 6, которые соответствуют практически минимальному и номинальному значениям токов возбуждения муфты. Однако увеличение диапазона регулирования частоты вращения привода связано со значительными потерями в муфте скольжения, которые в основном складываются из потерь в якоре и в обмотке возбуждения. Причем потери якоря, особенно с увеличением скольжения, значительно преобладают над другими потерями и составляют 96 - 97 % максимальной мощности, передаваемой муфтой. При постоянном моменте нагрузки частота вращения ведущего вала муфты постоянна, т. е. n = const, ω = const.

У электромагнитных порошковых муфт соединение между ведущей и ведомой частями осуществляется за счет повышения вязкости смесей, заполняющих зазор между поверхностями сцепления муфт при увеличении магнитного потока в этом зазоре. Главным компонентом таких смесей являются ферромагнитные порошки, например карбонильное железо. Для устранения механического разрушения частиц железа из-за сил трения или их слипания добавляют специальные наполнители - жидкими (синтетические жидкости, индустриальные масло или сыпучими (оксиды цинка или магния, кварцевый порошок). Такие муфты обладают высокой скоростью срабатывания, однако эксплуатационная надежность их является недостаточной для широкого применения в станкостроении.

Рассмотрим одну из схем плавного регулирования скорости вращения исполнительным двигателем ИД, работающего через муфту скольжения М на исполнительный механизм ИМ.

Схема включения муфты скольжения для регулирования скорости вращения исполнительного механизма

При изменении нагрузки на валу исполнительного механизма выходное напряжение тахогенератора ТГ также будет изменяться, в результате чего разность магнитных потоков Ф1 и Ф2 электромашинного усилителя будет увеличиваться или уменьшаться, изменяя тем самым напряжение на выходе ЭМУ и величину силы тока в обмотке муфты.

Электромагнитные муфты ЭТМ

Электромагнитная муфта ЭТМЭлектромагнитные муфты трения ЭТМ (сухие и масляные) позволяют производить пуск, торможение и реверсирование за время до 0,2 с, а также осуществлять десятки включений в течение 1 с. Управление муфтами и их питание осуществляется постоянным током напряжением 110, 36 и 24 В. Мощность управления составляет не более 1 % мощности, передаваемой муфтой. По конструкции муфты бывают одно- и многодисковые, нереверсивные и реверсивные.

Электромагнитные муфты серии ЭТМ с магнитопроводящими дисками выполняют контактного исполнения (ЭТМ2), бесконтактные (ЭТМ4) и тормозные (ЭТМ6). Муфты с контактным токоироводом отличаются невысокой надежностью из-за наличия скользящего контакта, поэтому в наиболее качественных приводах используют электромагнитные муфты с неподвижным токопроводом. Они имеют дополнительные воздушные зазоры.

Муфты бесконтактного исполнения отличаются наличием составного магнитопровода, образуемого корпусом и катушкодержателем, которые разделены так называемыми балластными зазорами. Катушкодержатель смонтирован неподвижно, при этом исключаются элементы контактного токопровода. За счет зазора снижается теплопередачи от фрикционных дисков к катушке, что повышает надежность муфты в тяжелых режимах работы.

В качестве ведущих целесообразно использовать муфты исполнения ЭТМ4, если это допустимо по условиям встройки, а в качестве тормозных - муфты исполнения ЭТМ6.

Муфты ЭТМ4 надежно работают при высокой частоте вращения и частых включениях. Эти муфты менее чувствительны к загрязнению масла, чем ЭТМ2, наличие у которых твердых частиц в масле может вызвать абразивный износ щеток, поэтому муфты ЭТМ2 могут применяться, если указанные ограничения отсутствуют и монтаж муфт ЭТМ4 по условиям конструкции узла затруднителен.

В качестве тормозных необходимо применять муфты исполнения ЭТМ6. Муфты ЭТМ2 и ЭТМ4 не следует применять для торможения по «обращенной» схеме, т. е. при вращающейся муфте и неподвижно закрепленном поводке. Для выбора муфт необходимо оценить: статический (передаваемый) момент, динамический момент, время переходного процесса в приводе, средние потери, единичную энергию и остаточный момент покоя.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика