Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике

ПОИСК ПО САЙТУ:

 
  
  

 

Электропривод

Определение мощности двигателей при повторно-краковременном режиме работы

 

Определение мощности двигателей при повторно-краковременном режиме работыРежим работы электропривода, при котором периоды работы имеют такую длительность и так чередуются с паузами определенной длительности, что температура всех устройств, входящих в состав электропривода, не достигает установившегося значения, ни во время каждого периода работы, ни во время каждой паузы, называется повторно-кратковременным.

Режиму повторно-кратковременной нагрузки соответствуют графики, подобные представленному на рис. 1. Перегрев электродвигателя изменяется по пилообразной ломаной линии, состоящей из чередующихся отрезков кривых нагрева и охлаждения. Режим повторно-кратковременной нагрузки характерен для приводов большинства металлорежущих станков.

Рис. 1. График повторно-кратковременной нагрузки

Мощность электродвигателя, работающего в повторно-кратковременном режиме, наиболее удобно определить по формуле средних потерь, которую можно записать в виде

где ΔA — потери энергии при каждом значении нагрузки, включая процессы пуска и торможения.

Когда электродвигатель не работает, условия его охлаждения значительно ухудшаются. Это учитывают введением экспериментальных коэффициентов β0 < 1. На коэффициент β0 умножают время t0 паузы, в результате чего знаменатель формулы уменьшается, и эквивалентные потери ΔРЭКВ увеличиваются, а следовательно, возрастает номинальная мощность электродвигателя.

У асинхронных защищенных двигателей серии А с синхронной частотой вращения 1500 об/мин и мощностью 1—100 кВт коэффициент β0 составляет 0,50—0,17, а у двигателей с обдувом β0 = 0,45 — 0,3 (с увеличением Рн коэффициент β0 убывает). У закрытых двигателей β0 близок к единице (0,93—0,98). Это объясняется тем, что эффективность вентиляции у закрытых двигателей низка.

Во время пуска и торможения средняя частота вращения электродвигателя ниже номинальной, вследствие чего также ухудшается охлаждение электродвигателя, что характеризуется коэффициентом

При определении коэффициента β1 условно принято, что изменение частоты вращения происходит по линейному закону и что коэффициент β1 линейно зависит от нее.

Зная коэффициенты β0 и β1 получим

где ΔР1, ΔР2, — потери мощности при различных нагрузках, кВт; t1 t2 —время действия этих нагрузок, с; tn, tT, t0—время пуска, торможения и паузы, с; ΔАп ΔАТ — потери энергии в двигателе при пуске и торможении, кДж.

Как было указано выше, каждый электродвигатель должен быть выбран по условиям нагрева и по условиям перегрузки. Для применения метода средних потерь необходимо предварительно задаться определенным электродвигателем, который и в данном случае целесообразно выбрать по условиям перегрузки. Формулу эквивалентной мощности можно использовать для грубого расчета в тех случаях, когда пуск и торможение происходят редко и существенно не влияют на нагрев электродвигателя.

В станкостроении для работы в режиме повторно-кратковременной нагрузки применяют электродвигатели, предназначенные для работы с продолжительной нагрузкой. Электропромышленность выпускает также и двигатели, специально предназначенные для работы с повторно-кратковременной нагрузкой, получившие широкое распространение в подъемно-транспортных сооружениях. Такие электродвигатели выбирают с учетом относительной продолжительности включения:

где tp — время работы двигателя; t0 — продолжительность паузы.

Пример выбора двигателя по мощности при повторно-краковременном режиме работы.

Определить мощность электродвигателя при п0 — 1500 об/мин; двигатель работает по нагрузочному графику, приведенному на рис. 2, а. Мощность на валу электродвигателя при холостом ходе станка Рхх = 1 квт. Приведенный момент инерции станка Jc = 0,045 кг-м2.

Решение:

1. Предварительно выбираем электродвигатель по условиям перегрузки, принимая λ = 1,6:

По каталогу подбираем электродвигатель защищенного исполнения ближайшей большой мощности (2,8 кВт), у которого пн = 1420 об/мин;

Для этого двигателя λ = 0,85•2 = 1,7. Таким образом, двигатель выбран с некоторым запасом по перегрузке.

Зависимость η=f(P/Pн) данного двигателя приведена на рис. 2, б.

Рис. 2. Зависимости N = f(t) и η=f(P/Pн)

2. По формуле

находим потери при мощностях 1; 3; 4,2 кВт (по графику). Потери соответственно составляют 0,35; 0,65 и 1 кВт. Находим потери при Рн = 2,8 кВт, которые составляют ΔРн = 0,57 кВт.

3. Определяем время пуска и время торможения противовключением:

где:

Получаем tn = 0,30 с; tт = 0,21 с.

4. Определяем потери при пуске и торможении:

Получаем ΔАп = 1,8 кДж и ΔАт = 3,8 кДж.

5. Находим эквивалентные потери цикла:

где

Получаем ΔРЭКВ = 0,44 кВт. Так как ΔРн = 0,57, то ΔРЭКВ < ΔРн и, следовательно, двигатель выбран правильно.



Статьи близкие по теме:
  • Режимы работы электродвигателей
  • Определение мощности двигателей при длительном режиме работы
  • Выбор электродвигателей для оборудования с различными типами нагрузки и реж ...
  • Расчет мощности электродвигателей механизмов металлорежущих станков токарно ...
  • Выбор двигателей для механизмов циклического действия



  • Школа для электрика | Основы электротехники | Электричество для чайников
    Электрические аппараты | Справочник электрика
     Электроснабжение | Электрические измерения | Электрические схемы
     Электромонтажные работы | Пусконаладочные работы | Эксплуатация электрооборудования

    Статьи и схемы

    » Школа для электрика
    » Электричество для чайников
    » Электробезопасность
    » Электрические схемы
    » Электроснабжение
    » Основы электротехники
    » Основы электроники
    » Электрические машины
    » Электрические аппараты
    » Автоматизация производственных процессов
    » Альтернативная энергетика
    » Заземление и молниезащита
    » Монтаж электрооборудования
    » Наладка электрооборудования
    » Релейная защита и автоматика
    » Ремонт электрооборудования
    » Экономия электроэнергии
    » Эксплуатация электрооборудования
    » Электрические измерения
    » Электрические системы и сети
    » Электрические станции и подстанции
    » Электрическое освещение
    » Электрооборудование промышленных предприятий
    » Электропривод
    » Электротехнические материалы
    » Электротехнология
    » Статьи на разные темы
    » Видеокурсы и другие обучающие материалы

    Силовые автоматические выключатели ВА07-М IEK